nccl_wrapper.h 5.2 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <atomic>
#include <ctime>
#include <map>
#include <memory>
#include <random>
#include <string>
#include <vector>
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/platform/macros.h"  // for DISABLE_COPY_AND_ASSIGN

namespace paddle {
namespace framework {

class NCCLWrapper {
 public:
  virtual ~NCCLWrapper() {}
  NCCLWrapper() {}

  // Pull sparse variables from server in Sync mode
  // Param<in>: scope, table_id, var_names, fea_keys
  // Param<out>: fea_values
  void PullSparseVarsSync(const Scope& scope, const uint64_t table_id,
                          const std::vector<std::string>& var_names,
                          std::vector<uint64_t>* fea_keys,
                          std::vector<std::vector<float>>* fea_values,
                          int fea_dim);

  void PullDenseVarsSync(const Scope& scope, const uint64_t table_id,
                         const std::vector<std::string>& var_names);

  void PullDenseVarsAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<std::string>& var_names,
      std::vector<::std::future<int32_t>>* pull_dense_status);

  void PushDenseParamSync(const Scope& scope, const uint64_t table_id,
                          const std::vector<std::string>& var_names);

  // Push dense variables to server in async mode
  // Param<in>: scope, table_id, var_names,
  // Param<out>: push_sparse_status
  void PushDenseVarsAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<std::string>& var_names,
      std::vector<::std::future<int32_t>>* push_sparse_status);

  void PushDenseVarsSync(Scope* scope, const uint64_t table_id,
                         const std::vector<std::string>& var_names);

  // Push sparse variables with labels to server in Async mode
  // This is specially designed for click/show stats in server
  // Param<in>: scope, table_id, var_grad_names,
  //            fea_keys, fea_labels, sparse_grad_names
  // Param<out>: push_values, push_sparse_status
  void PushSparseVarsWithLabelAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<uint64_t>& fea_keys,
      const std::vector<float>& fea_labels,
      const std::vector<std::string>& sparse_key_names,
      const std::vector<std::string>& sparse_grad_names, const int emb_dim,
      std::vector<std::vector<float>>* push_values,
      std::vector<::std::future<int32_t>>* push_sparse_status);

  // Push sparse variables to server in Async mode
  // Param<In>: scope, table_id, fea_keys, sparse_grad_names
  // Param<Out>: push_values, push_sparse_status
  /*
  void PushSparseVarsAsync(
          const Scope& scope,
          const uint64_t table_id,
          const std::vector<uint64_t>& fea_keys,
          const std::vector<std::string>& sparse_grad_names,
          std::vector<std::vector<float>>* push_values,
          std::vector<::std::future<int32_t>>* push_sparse_status);
  */

  void InitServer(const std::string& dist_desc, int index);
  void InitWorker(const std::string& dist_desc,
                  const std::vector<uint64_t>& host_sign_list, int node_num,
                  int index);
  void StopServer();
  uint64_t RunServer();
  void GatherServers(const std::vector<uint64_t>& host_sign_list, int node_num);
  // gather client ip
  void GatherClients(const std::vector<uint64_t>& host_sign_list);
  // get client info
  std::vector<uint64_t> GetClientsInfo();
  // create client to client connection
  void CreateClient2ClientConnection();

  // register client to client communication
  typedef std::function<int32_t(int, int, const std::string&)> MsgHandlerFunc;
  int RegisterClientToClientMsgHandler(int msg_type, MsgHandlerFunc handler);
  // send client to client message
  std::future<int32_t> SendClientToClientMsg(int msg_type, int to_client_id,
                                             const std::string& msg);

  template <typename T>
  void Serialize(const std::vector<T*>& t, std::string* str);
  template <typename T>
  void Deserialize(std::vector<T>* t, const std::string& str);
  static std::shared_ptr<FleetWrapper> GetInstance() {
    if (NULL == s_instance_) {
      s_instance_.reset(new paddle::framework::FleetWrapper());
    }
    return s_instance_;
  }

#ifdef PADDLE_WITH_PSLIB
  static std::shared_ptr<paddle::distributed::PSlib> pslib_ptr_;
#endif

 private:
  static std::shared_ptr<FleetWrapper> s_instance_;
#ifdef PADDLE_WITH_PSLIB
  std::map<uint64_t, std::vector<paddle::ps::Region>> _regions;
#endif

 protected:
  static bool is_initialized_;
  DISABLE_COPY_AND_ASSIGN(FleetWrapper);
};

}  // end namespace framework
}  // end namespace paddle