elementwise_add_op_xpu.cc 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/elementwise/elementwise_add_op.h"
#include <memory>
#include <string>
#include "paddle/fluid/operators/elementwise/elementwise_op.h"

#include "paddle/fluid/operators/elementwise/elementwise_xpu.h"

namespace paddle {
namespace operators {

26
template <typename T>
27
class ElementwiseAddXPUKernel : public framework::OpKernel<T> {
28 29
  using XPUType = typename XPUTypeTrait<T>::Type;

30
 public:
31
  void Compute(const framework::ExecutionContext& ctx) const override {
32 33 34
    XPUElementwise<T, XPUType>(ctx, xpu::broadcast_add<XPUType>);
  }
};
35

36 37 38 39 40 41
static std::vector<int> get_rdims(const std::vector<int>& xdims,
                                  const std::vector<int>& ydims) {
  std::vector<int> rdims;
  for (size_t i = 0; i < xdims.size(); i++) {
    if (xdims[i] != ydims[i]) {
      rdims.push_back(i);
42
    }
43
  }
44 45
  return rdims;
}
46

47
template <typename T>
48
class ElementwiseAddGradXPUKernel : public ElemwiseGradKernel<T> {
49 50
  using XPUType = typename XPUTypeTrait<T>::Type;

51
 public:
52
  void Compute(const framework::ExecutionContext& ctx) const override {
53
    ElemwiseGradKernel<T>::Compute(ctx);
54 55 56 57 58 59 60
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* y = ctx.Input<framework::Tensor>("Y");
    auto* dz = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
    const framework::DDim& x_dims = x->dims();
    const framework::DDim& y_dims = y->dims();
61 62
    const framework::DDim& dz_dims = dz->dims();
    int axis = ctx.Attr<int>("axis");
63
    axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
64
    int max_dim = std::max(x_dims.size(), y_dims.size());
65 66 67 68 69 70 71 72 73 74
    PADDLE_ENFORCE_GE(
        axis, 0,
        platform::errors::InvalidArgument(
            "Axis should be great than or equal to 0, but received axis is %d.",
            axis));
    PADDLE_ENFORCE_LT(
        axis, max_dim,
        platform::errors::InvalidArgument(
            "Axis should be less than %d, but received axis is %d.", max_dim,
            axis));
75

76 77
    std::vector<int> x_dims_vec(max_dim, 1);
    std::vector<int> y_dims_vec(max_dim, 1);
78
    std::vector<int> z_dims_vec(max_dim, 1);
79 80 81 82 83 84 85 86 87
    if (x_dims.size() == max_dim) {
      for (int i = 0; i < max_dim; i++) {
        x_dims_vec[i] = x_dims[i];
      }
    } else {
      for (int i = 0; i < x_dims.size(); i++) {
        x_dims_vec[i + axis] = x_dims[i];
      }
    }
88

89 90 91 92 93 94 95 96 97 98
    if (y_dims.size() == max_dim) {
      for (int i = 0; i < max_dim; i++) {
        y_dims_vec[i] = y_dims[i];
      }
    } else {
      for (int i = 0; i < y_dims.size(); i++) {
        y_dims_vec[i + axis] = y_dims[i];
      }
    }

99 100
    for (int i = 0; i < max_dim; i++) {
      z_dims_vec[i] = dz_dims[i];
101
    }
102 103 104 105 106
    std::vector<int> rdims_for_x;
    std::vector<int> rdims_for_y;
    rdims_for_x = get_rdims(x_dims_vec, z_dims_vec);
    rdims_for_y = get_rdims(y_dims_vec, z_dims_vec);
    const T* dz_data = dz->data<T>();
107 108
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::XPUDeviceContext>();
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    if (dx != nullptr) {
      if (rdims_for_x.size() == 0) {
        framework::TensorCopy(
            *dz, ctx.GetPlace(),
            ctx.template device_context<platform::DeviceContext>(), dx);
      } else {
        T* dx_data = dx->mutable_data<T>(ctx.GetPlace());
        int ret = xpu::reduce_sum<XPUType>(
            dev_ctx.x_context(), reinterpret_cast<const XPUType*>(dz_data),
            reinterpret_cast<XPUType*>(dx_data), z_dims_vec, rdims_for_x);
        PADDLE_ENFORCE_EQ(
            ret, xpu::SUCCESS,
            platform::errors::External("XPU kernel reduce_sum occur error in "
                                       "XPUElementwise error code ",
                                       ret, XPUAPIErrorMsg[ret]));
      }
    }

    if (dy != nullptr) {
      if (rdims_for_y.size() == 0) {
        framework::TensorCopy(
            *dz, ctx.GetPlace(),
            ctx.template device_context<platform::DeviceContext>(), dy);
      } else {
        T* dy_data = dy->mutable_data<T>(ctx.GetPlace());
        int ret = xpu::reduce_sum<XPUType>(
            dev_ctx.x_context(), reinterpret_cast<const XPUType*>(dz_data),
            reinterpret_cast<XPUType*>(dy_data), z_dims_vec, rdims_for_y);
        PADDLE_ENFORCE_EQ(
            ret, xpu::SUCCESS,
            platform::errors::External("XPU kernel reduce_sum occur error in "
                                       "XPUElementwise error code ",
                                       ret, XPUAPIErrorMsg[ret]));
      }
143
    }
144 145 146 147 148 149 150 151
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

152 153
REGISTER_OP_XPU_KERNEL(elementwise_add, ops::ElementwiseAddXPUKernel<float>,
                       ops::ElementwiseAddXPUKernel<paddle::platform::float16>);
154
REGISTER_OP_XPU_KERNEL(
155 156
    elementwise_add_grad, ops::ElementwiseAddGradXPUKernel<float>,
    ops::ElementwiseAddGradXPUKernel<paddle::platform::float16>);
157
#endif