parse_utils.py 17.5 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re
from copy import copy
17 18
from typing import Any, Dict, List, Tuple

19 20 21 22 23 24 25 26 27 28 29 30 31
from tests import is_attr, is_input, is_output, is_vec


def to_named_dict(items: List[Dict]) -> Dict[str, Dict]:
    named_dict = {}
    for item in items:
        if "name" not in item:
            raise KeyError(f"name not in {item}")
        name = item["name"]
        named_dict[name] = item
    return named_dict


32
def parse_arg(op_name: str, s: str) -> Dict[str, str]:
33 34 35 36 37
    """parse an argument in following formats:
    1. typename name
    2. typename name = default_value
    """
    typename, rest = [item.strip() for item in s.split(" ", 1)]
38 39
    assert (
        len(typename) > 0
40
    ), f"The arg typename should not be empty. Please check the args of {op_name} in yaml."
41

42 43
    assert (
        rest.count("=") <= 1
44
    ), f"There is more than 1 = in an arg in {op_name}"
45 46
    if rest.count("=") == 1:
        name, default_value = [item.strip() for item in rest.split("=", 1)]
47 48
        assert (
            len(name) > 0
49
        ), f"The arg name should not be empty. Please check the args of {op_name} in yaml."
50 51
        assert (
            len(default_value) > 0
52
        ), f"The default value should not be empty. Please check the args of {op_name} in yaml."
53 54 55
        return {
            "typename": typename,
            "name": name,
56
            "default_value": default_value,
57 58 59
        }
    else:
        name = rest.strip()
60 61
        assert (
            len(name) > 0
62
        ), f"The arg name should not be empty. Please check the args of {op_name} in yaml."
63 64 65
        return {"typename": typename, "name": name}


66
def parse_input_and_attr(
67
    op_name: str, arguments: str
68
) -> Tuple[List, List, Dict, Dict]:
69
    args_str = arguments.strip()
70 71
    assert args_str.startswith('(') and args_str.endswith(')'), (
        f"Args declaration should start with '(' and end with ')', "
72
        f"please check the args of {op_name} in yaml."
73
    )
74 75 76 77 78 79 80 81 82
    args_str = args_str[1:-1]
    args = parse_plain_list(args_str)

    inputs = []
    attrs = []

    met_attr_with_default_value = False

    for arg in args:
83
        item = parse_arg(op_name, arg)
84 85 86
        typename = item["typename"]
        name = item["name"]
        if is_input(typename):
87 88
            assert len(attrs) == 0, (
                f"The input Tensor should appear before attributes. "
89
                f"please check the position of {op_name}:input({name}) "
90 91
                f"in yaml."
            )
92 93 94
            inputs.append(item)
        elif is_attr(typename):
            if met_attr_with_default_value:
95 96
                assert (
                    "default_value" in item
97
                ), f"{op_name}: Arguments with default value should not precede those without default value"
98 99 100 101
            elif "default_value" in item:
                met_attr_with_default_value = True
            attrs.append(item)
        else:
102
            raise KeyError(f"{op_name}: Invalid argument type {typename}.")
103 104 105
    return inputs, attrs


106
def parse_output(op_name: str, s: str) -> Dict[str, str]:
107 108 109
    """parse an output, typename or typename(name)."""
    match = re.search(
        r"(?P<out_type>[a-zA-Z0-9_[\]]+)\s*(?P<name>\([a-zA-Z0-9_@]+\))?\s*(?P<expr>\{[^\}]+\})?",
110 111
        s,
    )
112 113 114 115 116 117 118
    typename = match.group("out_type")
    name = match.group("name")
    size_expr = match.group("expr")

    name = name[1:-1] if name is not None else 'out'
    size_expr = size_expr[1:-1] if size_expr is not None else None

119
    assert is_output(typename), (
120
        f"Invalid output type: {typename} in op : {op_name}."
121 122
        f"Supported types are Tensor and Tensor[]"
    )
123
    if size_expr is not None:
124
        assert is_vec(typename), (
125
            f"Invalid output size: output {name} in op : {op_name} is "
126 127
            f"not a vector but has size expr"
        )
128 129 130 131 132
        return {"typename": typename, "name": name, "size": size_expr}
    else:
        return {"typename": typename, "name": name}


133
def parse_outputs(op_name: str, outputs: str) -> List[Dict]:
134 135 136
    outputs = parse_plain_list(outputs, sep=",")
    output_items = []
    for output in outputs:
137
        output_items.append(parse_output(op_name, output))
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    return output_items


def parse_infer_meta(infer_meta: Dict[str, Any]) -> Dict[str, Any]:
    infer_meta = copy(infer_meta)  # to prevent mutating the input
    if "param" not in infer_meta:
        infer_meta["param"] = None
    return infer_meta


def parse_candidates(s: str) -> Dict[str, Any]:
    "parse candidates joined by either '>'(ordered) or ','(unordered)"
    delimiter = ">" if ">" in s else ","
    ordered = delimiter == ">"
    candidates = parse_plain_list(s, delimiter)
    return {"ordered": ordered, "candidates": candidates}


def parse_plain_list(s: str, sep=",") -> List[str]:
    items = [item.strip() for item in s.strip().split(sep)]
    return items


161
def parse_kernel(op_name: str, kernel_config: Dict[str, Any]) -> Dict[str, Any]:
162 163 164 165 166 167
    # kernel :
    #    func : [], Kernel functions (example: scale, scale_sr)
    #    param : [], Input params of kernel
    #    backend : str, the names of param to choose the kernel backend, default is None
    #    layout : str, the names of param to choose the kernel layout, default is None
    #    data_type : str, the names of param to choose the kernel data_type, default is None
168
    #    dispatch : {}, the key is kernel_func, the value is type of inputs and outputs for kernel (example: {kernel_name : (['dense','sparse_coo']#input,['sparse_coo']#output)})
169
    kernel = {
170
        'func': [],  # up to 2 function names
171 172 173
        'param': None,
        'backend': None,
        'layout': None,
174
        'data_type': None,
175
        'dispatch': {},
176 177 178 179 180 181 182 183 184 185 186 187
    }
    if 'param' in kernel_config:
        kernel['param'] = kernel_config['param']

    if 'backend' in kernel_config:
        kernel['backend'] = parse_candidates(kernel_config["backend"])

    if 'layout' in kernel_config:
        kernel['layout'] = parse_candidates(kernel_config["layout"])

    if 'data_type' in kernel_config:
        kernel['data_type'] = parse_candidates(kernel_config["data_type"])
188 189

    kernel_funcs = re.compile(r'([a-zA-Z0-9_]+)\s*({[^}]+})?').findall(
190 191
        kernel_config['func']
    )
192 193 194 195 196 197 198 199 200 201 202

    def parse_kernel_in_out_type(in_out_str):
        if len(in_out_str) == 0:
            return None
        tmp_in_out_list = in_out_str[1:-1].split('->')
        inputs = [item.strip() for item in tmp_in_out_list[0].split(',')]
        outputs = [item.strip() for item in tmp_in_out_list[1].split(',')]

        # check the tensor type
        for item in inputs:
            assert item in [
203 204 205 206
                'dense',
                'selected_rows',
                'sparse_coo',
                'sparse_csr',
207
            ], f"{op_name} : Invalid input tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."
208 209
        for item in outputs:
            assert item in [
210 211 212 213
                'dense',
                'selected_rows',
                'sparse_coo',
                'sparse_csr',
214
            ], f"{op_name} : Invalid output tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."
215 216 217 218 219 220

        return (inputs, outputs)

    for func_item in kernel_funcs:
        kernel['func'].append(func_item[0])
        kernel['dispatch'][func_item[0]] = parse_kernel_in_out_type(
221 222
            func_item[1]
        )
223

224 225 226
    return kernel


227
def parse_inplace(op_name: str, inplace_cfg: str) -> Dict[str, str]:
228 229 230 231 232 233 234 235 236
    inplace_map = {}
    inplace_cfg = inplace_cfg.lstrip("(").rstrip(")")
    pairs = parse_plain_list(inplace_cfg)
    for pair in pairs:
        in_name, out_name = parse_plain_list(pair, sep="->")
        inplace_map[out_name] = in_name
    return inplace_map


237
def parse_invoke(op_name: str, invoke_config: str) -> Dict[str, Any]:
238 239 240 241 242 243 244 245 246
    invoke_config = invoke_config.strip()
    func, rest = invoke_config.split("(", 1)
    func = func.strip()
    args = rest.rstrip(")").strip()
    invocation = {"func": func, "args": args}
    return invocation


def extract_type_and_name(records: List[Dict]) -> List[Dict]:
247
    """extract type and name from forward call, it is simpler than forward op ."""
248 249 250
    extracted = [
        {"name": item["name"], "typename": item["typename"]} for item in records
    ]
251 252 253
    return extracted


254 255
def parse_forward(op_name: str, forward_config: str) -> Dict[str, Any]:
    # op_name (const Tensor& input, ... , int attr, ...) -> Tensor(out)
256
    result = re.search(
257
        r"(?P<op>[a-z][a-z0-9_]+)\s*(?P<args>\([^\)]+\))\s*->\s*(?P<outputs>.+)",
258 259
        forward_config,
    )
260 261
    op = result.group("op")
    outputs = parse_outputs(op_name, result.group("outputs"))
262 263
    outputs = extract_type_and_name(outputs)

264
    inputs, attrs = parse_input_and_attr(op_name, result.group("args"))
265 266 267
    inputs = extract_type_and_name(inputs)
    attrs = extract_type_and_name(attrs)
    forward_cfg = {
268
        "name": op,
269 270
        "inputs": inputs,
        "attrs": attrs,
271
        "outputs": outputs,
272 273 274 275
    }
    return forward_cfg


276 277 278 279
def parse_op_entry(op_entry: Dict[str, Any], name_field="op"):
    op_name = op_entry[name_field]
    inputs, attrs = parse_input_and_attr(op_name, op_entry["args"])
    outputs = parse_outputs(op_name, op_entry["output"])
280 281 282 283 284 285 286

    # validate default value of DataType and DataLayout
    for attr in attrs:
        if "default_value" in attr:
            typename = attr["typename"]
            default_value = attr["default_value"]
            if typename == "DataType":
287 288
                assert (
                    "DataType" in default_value
289
                ), f"invalid DataType default value in {op_name}"
290
                # remove namespace
291
                default_value = default_value[default_value.find("DataType") :]
292 293
                attr["default_value"] = default_value
            elif typename == "DataLayout":
294 295
                assert (
                    "DataLayout" in default_value
296
                ), f"invalid DataLayout default value in {op_name}"
297 298 299
                default_value = default_value[
                    default_value.find("DataLayout") :
                ]
300 301 302 303 304 305 306 307 308
                attr["default_value"] = default_value

    input_names = [item["name"] for item in inputs]
    attr_names = [item["name"] for item in attrs]
    output_names = [item["name"] for item in outputs]

    # add optional tag for every input
    for input in inputs:
        input["optional"] = False
309 310
    if "optional" in op_entry:
        optional_args = parse_plain_list(op_entry["optional"])
311
        for name in optional_args:
312 313
            assert (
                name in input_names
314
            ), f"{op_name} has an optional input: '{name}' which is not an input."
315 316 317 318 319 320 321
        for input in inputs:
            if input["name"] in optional_args:
                input["optional"] = True

    # add intermediate tag for every output
    for output in outputs:
        output["intermediate"] = False
322 323
    if "intermediate" in op_entry:
        intermediate_outs = parse_plain_list(op_entry["intermediate"])
324
        for name in intermediate_outs:
325 326
            assert (
                name in output_names
327
            ), f"{op_name} has an intermediate output: '{name}' which is not an output."
328 329 330 331 332 333 334
        for output in outputs:
            if output["name"] in intermediate_outs:
                output["intermediate"] = True

    # add no_need_buffer for every input
    for input in inputs:
        input["no_need_buffer"] = False
335 336
    if "no_need_buffer" in op_entry:
        no_buffer_args = parse_plain_list(op_entry["no_need_buffer"])
337
        for name in no_buffer_args:
338 339
            assert (
                name in input_names
340
            ), f"{op_name} has an no buffer input: '{name}' which is not an input."
341 342 343 344 345 346 347 348
        for input in inputs:
            if input["name"] in no_buffer_args:
                input["no_need_buffer"] = True
    else:
        no_buffer_args = None

    # TODO(chenfeiyu): data_transform

349 350
    op = {
        "name": op_name,
351 352 353
        "inputs": inputs,
        "attrs": attrs,
        "outputs": outputs,
354
        "no_need_buffer": no_buffer_args,
355 356
    }

357 358
    # invokes another op ?
    is_base_op = "invoke" not in op_entry
359

360
    if is_base_op:
361
        # kernel
362
        kernel = parse_kernel(op_name, op_entry["kernel"])
363 364 365 366
        if kernel["param"] is None:
            kernel["param"] = input_names + attr_names

        # infer meta
367
        infer_meta = parse_infer_meta(op_entry["infer_meta"])
368 369 370 371
        if infer_meta["param"] is None:
            infer_meta["param"] = copy(kernel["param"])

        # inplace
372 373
        if "inplace" in op_entry:
            inplace_pairs = parse_inplace(op_name, op_entry["inplace"])
374 375
        else:
            inplace_pairs = None
376
        op.update(
377 378 379 380 381 382
            {
                "infer_meta": infer_meta,
                "kernel": kernel,
                "inplace": inplace_pairs,
            }
        )
383 384
    else:
        # invoke
385 386
        invoke = parse_invoke(op_name, op_entry["invoke"])
        op["invoke"] = invoke
387 388

    # backward
389 390
    if "backward" in op_entry:
        backward = op_entry["backward"]
391 392
    else:
        backward = None
393
    op["backward"] = backward
394

395 396 397 398 399
    # forward for backward_ops
    is_backward_op = name_field == "backward_op"
    if is_backward_op:
        if "forward" in op_entry:
            forward = parse_forward(op_name, op_entry["forward"])
400
            # validate_fb
401
            validate_backward_inputs(
402
                op_name, forward["inputs"], forward["outputs"], inputs
403
            )
404 405
            validate_backward_attrs(op_name, forward["attrs"], attrs)
            validate_backward_outputs(op_name, forward["inputs"], outputs)
406 407
        else:
            forward = None
408 409
        op["forward"] = forward
    return op
410 411


412
def validate_backward_attrs(op, forward_attrs, backward_attrs):
413 414 415
    if len(forward_attrs) >= len(backward_attrs):
        return
    num_exceptional_attrs = len(backward_attrs) - len(forward_attrs)
416 417
    # this is a not-that-clean trick to allow backward op to has more attrs
    # than the forward op , as long as they all have default value
418
    for i in range(-num_exceptional_attrs, 0):
419 420
        assert (
            "default_value" in backward_attrs[i]
421
        ), f"{op } has exceptional attr without default value"
422 423


424
def validate_backward_inputs(
425
    op, forward_inputs, forward_outputs, backward_inputs
426
):
427 428 429 430 431
    foward_input_names = [item["name"] for item in forward_inputs]
    forward_output_names = [item["name"] for item in forward_outputs]
    backward_input_names = [item["name"] for item in backward_inputs]

    assert len(backward_input_names) <= len(foward_input_names) + 2 * len(
432
        forward_output_names
433
    ), f"{op } has too many inputs."
434 435


436
def validate_backward_outputs(op, forward_inputs, backward_outputs):
437
    assert len(backward_outputs) <= len(
438
        forward_inputs
439
    ), f"{op } has too many outputs"
440 441


442 443 444 445
def cross_validate(ops):
    for name, op in ops.items():
        if "forward" in op:
            fw_call = op["forward"]
446
            fw_name = fw_call["name"]
447
            if fw_name not in ops:
448
                print(
449
                    f"Something Wrong here, this backward op ({name})'s forward op ({fw_name}) does not exist."
450 451
                )
            else:
452 453
                fw_op = ops[fw_name]
                if "backward" not in fw_op or fw_op["backward"] is None:
454
                    print(
455
                        f"Something Wrong here, {name}'s forward op ({fw_name}) does not claim {name} as its backward."
456 457
                    )
                else:
458
                    assert (
459
                        fw_op["backward"] == name
460
                    ), f"{name}: backward and forward name mismatch"
461 462

                assert len(fw_call["inputs"]) <= len(
463 464 465
                    fw_op["inputs"]
                ), f"{name}: forward call has more inputs than the op "
                for (input, input_) in zip(fw_call["inputs"], fw_op["inputs"]):
466 467 468
                    assert (
                        input["typename"] == input_["typename"]
                    ), f"type mismatch in {name} and {fw_name}"
469 470

                assert len(fw_call["attrs"]) <= len(
471 472 473
                    fw_op["attrs"]
                ), f"{name}: forward call has more attrs than the op "
                for (attr, attr_) in zip(fw_call["attrs"], fw_op["attrs"]):
474 475 476 477 478 479
                    if attr["typename"] == "Scalar":
                        # special case for Scalar, fw_call can omit the type
                        assert re.match(
                            r"Scalar(\(\w+\))*", attr_["typename"]
                        ), f"type mismatch in {name} and {fw_name}"
                    else:
480 481 482
                        assert (
                            attr["typename"] == attr_["typename"]
                        ), f"type mismatch in {name} and {fw_name}"
483 484

                assert len(fw_call["outputs"]) == len(
485 486
                    fw_op["outputs"]
                ), f"{name}: forward call has more outputs than the op "
487
                for (output, output_) in zip(
488
                    fw_call["outputs"], fw_op["outputs"]
489 490 491 492
                ):
                    assert (
                        output["typename"] == output_["typename"]
                    ), f"type mismatch in {name} and {fw_name}"