base.py 22.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from ..wrapped_decorator import signature_safe_contextmanager, wrap_decorator
15
import decorator
16
import contextlib
S
songyouwei 已提交
17
import functools
18
import sys
19 20 21
import numpy as np
from paddle.fluid import core
from paddle.fluid import framework
H
hong 已提交
22
from paddle.fluid.multiprocess_utils import CleanupFuncRegistrar
M
minqiyang 已提交
23
from .tracer import Tracer
Z
Zeng Jinle 已提交
24
import logging
J
Jiabin Yang 已提交
25
import objgraph
26

27 28
__all__ = [
    'no_grad',
Z
Zeng Jinle 已提交
29
    'grad',
30
    'guard',
31 32
    'enable_dygraph',
    'disable_dygraph',
33 34
    'enable_imperative',
    'disable_imperative',
35
    'enabled',
36 37
    'to_variable',
]
38 39


40 41 42 43 44 45 46 47 48 49 50
def _switch_to_static_graph_(func):
    def __impl__(*args, **kwargs):
        with framework._dygraph_guard(None):
            return func(*args, **kwargs)

    return __impl__


switch_to_static_graph = wrap_decorator(_switch_to_static_graph_)


51 52 53 54 55 56 57 58 59 60 61
@signature_safe_contextmanager
def program_desc_tracing_guard(enable):
    tracer = framework._dygraph_tracer()
    if tracer:
        original_val = tracer._enable_program_desc_tracing
        tracer._enable_program_desc_tracing = enable
    yield
    if tracer:
        tracer._enable_program_desc_tracing = original_val


62 63 64
_functional_dygraph_context_manager = None


65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
@signature_safe_contextmanager
def param_guard(parameters):
    # Note: parameters is a reference of self._parameters
    if not framework.in_dygraph_mode() and parameters:
        origin_parameters = parameters.copy()
        for name, var_base in parameters.items():
            if isinstance(var_base, core.VarBase):
                new_var = framework.Parameter(
                    var_base.block,
                    var_base.shape,
                    var_base.dtype,
                    var_base.type,
                    name=var_base.name)
                parameters[name] = new_var
        yield
        parameters.update(origin_parameters)
    else:
        yield


85
def enabled():
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    """
    This function checks whether the program runs in dynamic graph mode or not.
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable`
    and :ref:`api_fluid_dygraph_disable` api .

    **Note**:
        ``fluid.dygraph.enabled`` is the alias of ``fluid.in_dygraph_mode``, and
        ``fluid.in_dygraph_mode`` is recommended to use.

    Returns:
        bool: Whether the program is running in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.dygraph.enabled())  # True
            fluid.disable_dygraph()
            print(fluid.dygraph.enabled())  # False
    """
L
lujun 已提交
109
    return framework.in_dygraph_mode()
110 111


112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
def enable_imperative(place=None):
    """
    This function enables imperative mode.

    Parameters:
        place(fluid.CPUPlace or fluid.CUDAPlace, optional): Place for imperative execution.
            If None, the running place will be determined according to the way of paddle compilation. Default: None

    return:
        None

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_imperative()  # Now we are in imperative mode
            x = fluid.layers.ones( (2, 2), "float32")
            y = fluid.layers.zeros( (2, 2), "float32")
            z = x + y
            print( z.numpy() )   #[[1, 1], [1, 1]]

    """
    enable_dygraph(place)


def disable_imperative():
    """
    This function disables imperative mode.

    return:
        None

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_imperative()  # Now we are in imperative mode
            x = fluid.layers.ones( (2, 2), "float32")
            y = fluid.layers.zeros( (2, 2), "float32")
            z = x + y
            print( z.numpy() )   #[[1, 1], [1, 1]]
            fluid.disable_imperative() # Now we are in declarative mode
    """
    disable_dygraph()


160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
def enable_dygraph(place=None):
    """
    This function enables dynamic graph mode.

    Parameters:
        place(fluid.CPUPlace or fluid.CUDAPlace, optional): Place to execute dygraph.
            If None, the running place will be determined according to the way of paddle compilation. Default: None

    return:
        None

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
    """
    global _functional_dygraph_context_manager
S
songyouwei 已提交
182 183 184
    if _functional_dygraph_context_manager is None:
        _functional_dygraph_context_manager = guard(place=place)
        _functional_dygraph_context_manager.__enter__()
185

H
hong 已提交
186 187 188
        # call disable_dygraph when Python exit
        CleanupFuncRegistrar.register(disable_dygraph)

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

def disable_dygraph():
    """
    This function disables dynamic graph mode.

    return:
        None

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
    """
    global _functional_dygraph_context_manager
    if _functional_dygraph_context_manager is not None:
        _functional_dygraph_context_manager.__exit__(*sys.exc_info())
        _functional_dygraph_context_manager = None


213 214 215 216 217 218 219 220 221 222 223 224
@contextlib.contextmanager
def _switch_tracer_mode_guard_(is_train=True):
    tracer = framework._dygraph_tracer()
    if tracer:
        mode = tracer._train_mode
        tracer._train_mode = is_train
        yield
        tracer._train_mode = mode
    else:
        yield


225
def no_grad(func=None):
226
    """
227 228
    Create a context which disables dygraph gradient calculation.
    In this mode, the result of every computation will have `stop_gradient=True`.
229

230
    Also functions as a decorator. (Make sure to instantiate without parenthesis.)
231 232 233 234 235 236 237 238

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
        # use as generator

        data = np.array([[2, 3], [4, 5]]).astype('float32')
        with fluid.dygraph.guard():
            l0 = fluid.Linear(2, 2)  # l0.weight.gradient() is None
            l1 = fluid.Linear(2, 2)
            with fluid.dygraph.no_grad():
                # l1.weight.stop_gradient is False
                tmp = l1.weight * 2  # tmp.stop_gradient is True
            x = fluid.dygraph.to_variable(data)
            y = l0(x) + tmp
            o = l1(y)
            o.backward()
            print(tmp.gradient() is None)  # True
            print(l0.weight.gradient() is None)  # False

        # use as decorator

257 258 259
        @fluid.dygraph.no_grad
        def test_layer():
            with fluid.dygraph.guard():
260
                inp = np.ones([3, 1024], dtype='float32')
261
                t = fluid.dygraph.base.to_variable(inp)
262 263 264 265
                linear1 = fluid.Linear(1024, 4, bias_attr=False)
                linear2 = fluid.Linear(4, 4)
                ret = linear1(t)
                dy_ret = linear2(ret)
266 267 268 269

        test_layer()

    """
270 271 272
    if func is None:
        return _switch_tracer_mode_guard_(is_train=False)
    else:
273

274 275
        @decorator.decorator
        def __impl__(func, *args, **kwargs):
276 277
            with _switch_tracer_mode_guard_(is_train=False):
                return func(*args, **kwargs)
278

279
        return __impl__(func)
280 281


S
rename  
sneaxiy 已提交
282
@signature_safe_contextmanager
P
Paddle CI 已提交
283
def guard(place=None):
284
    """
285
    This context will create a dygraph context for dygraph to run, using python ``with`` statement.
286

287 288 289
    Parameters:
        place(fluid.CPUPlace or fluid.CUDAPlace, optional): Place to execute dygraph. 
            If None, the running place will be determined according to the way of paddle compilation. Default: None
290 291 292 293 294 295 296 297 298 299 300 301

    return:
        None

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

        with fluid.dygraph.guard():
302
            inp = np.ones([3, 1024], dtype='float32')
303
            t = fluid.dygraph.base.to_variable(inp)
304 305 306 307
            linear1 = fluid.Linear(1024, 4, bias_attr=False)
            linear2 = fluid.Linear(4, 4)
            ret = linear1(t)
            dy_ret = linear2(ret)
308 309

    """
310 311
    train = framework.Program()
    startup = framework.Program()
J
Jiabin Yang 已提交
312
    tracer = Tracer()
313
    VarBase = core.VarBase
M
minqiyang 已提交
314

P
Paddle CI 已提交
315
    if place is None:
M
minqiyang 已提交
316
        if core.is_compiled_with_cuda():
P
Paddle CI 已提交
317
            place = core.CUDAPlace(0)
M
minqiyang 已提交
318 319
        else:
            place = core.CPUPlace()
320
    tracer._expected_place = place
M
minqiyang 已提交
321

322 323
    with framework.program_guard(train, startup):
        with framework.unique_name.guard():
L
lujun 已提交
324 325
            with framework._dygraph_guard(tracer):
                with framework._dygraph_place_guard(place):
P
Paddle CI 已提交
326
                    yield
327 328


329
def _print_debug_msg(parameter_list, limit=5, is_test=False):
Z
Zeng Jinle 已提交
330 331 332 333 334 335
    if not core._is_dygraph_debug_enabled():
        logging.warn(
            'Debug mode is not enabled. Please set FLAGS_dygraph_debug=1 to enable debug'
        )
        return
    unique_name_size = len(framework.unique_name.generator.ids)
336
    tracer_var_size = len(parameter_list)
Z
Zeng Jinle 已提交
337
    alive_cpp_var_size = len(core.VarBase._alive_vars())
J
Jiabin Yang 已提交
338 339 340 341 342 343 344
    if not is_test:
        logging.warn(
            'unique_name num: {}, tracer vars num: {}, alive cpp vars num: {}'
            .format(unique_name_size, tracer_var_size, alive_cpp_var_size))
        objgraph.show_growth(limit=limit)
    else:
        return unique_name_size, tracer_var_size, alive_cpp_var_size
Z
Zeng Jinle 已提交
345 346


347 348 349 350
@framework.dygraph_only
def grad(outputs,
         inputs,
         grad_outputs=None,
Z
Zeng Jinle 已提交
351
         retain_graph=None,
352
         create_graph=False,
Z
Zeng Jinle 已提交
353 354 355
         only_inputs=True,
         allow_unused=False,
         no_grad_vars=None,
356
         backward_strategy=None):
Z
Zeng Jinle 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
    ''' 
    .. note::
        **This API is ONLY available in Dygraph mode.**

    This API computes the sum of gradients of `outputs` with respect to each `inputs` .

    Parameters:
        outputs (Variable|list(Variable)|tuple(Variable)): the output Variable or 
            Variable list/tuple of the graph to compute gradients.
        inputs (Variable|list(Variable)|tuple(Variable)): the input Variable or 
            Variable list/tuple of the graph to compute gradients. The returned
            values of this API are the gradients of `inputs` . 
        grad_outputs (Variable|list(Variable|None)|tuple(Variable|None), optional): 
            initial gradient values of `outputs` . If `grad_outputs` is None, 
            the initial gradient values of `outputs` would be Tensors filled with 1; 
            if `grad_outputs` is not None, it must have the same length as `outputs` , 
            and in this case, the initial gradient value of the i-th `outputs` would
            be: (1) a Tensor filled with 1 when the i-th element of `grad_outputs` 
            is None; (2) the i-th element of `grad_outputs` when the i-th element of
            `grad_outputs` is a Variable. Default None.
        retain_graph (bool, optional): whether to retain the forward graph which 
            is used to calculate the gradient. When it is True, the graph would 
            be retained, in which way users can calculate backward twice for the 
            same graph. When it is False, the graph would be freed. Default None,
            which means it is equal to `create_graph` . 
        create_graph (bool, optional): whether to create the gradient graphs of
            the computing process. When it is True, higher order derivatives are
            supported to compute; when it is False, the gradient graphs of the
            computing process would be discarded. Default False.
        only_inputs (bool, optional): whether to only compute the gradients of
            `inputs` . If it is False, the gradients of all remaining leaf 
            Variables in the graph would be also computed and accumulated. 
            If it is True, only the gradients of `inputs` would be computed.
            Default True. only_inputs=False is under development, and it is
            not supported yet.    
        allow_unused (bool, optional): whether to raise error or return None if some 
            Variables of `inputs` are unreachable in the graph. If some Variables of 
            `inputs` are unreachable in the graph (i.e., their gradients are None),  
            error would be raised if allow_unused=False, or None would be returned as
            their gradients if allow_unused=True. Default False.
        no_grad_vars (Variable|list(Variable)|tuple(Variable)|set(Variable), optional): 
            the Variables whose gradients are not needed to compute. Default None.
        backward_strategy (BackwardStrategy, optional): The backward strategy to
            compute gradients. See :ref:`api_fluid_dygraph_BackwardStrategy` for
            details. Default None.

    Returns:
        tuple: a tuple of Variables, whose length is the same as the Variable number 
        inside `inputs`, and the i-th returned Variable is the sum of gradients of 
        `outputs` with respect to the i-th `inputs`.

    Examples 1:
        .. code-block:: python

            import paddle.fluid as fluid

            def test_dygraph_grad(create_graph):
                with fluid.dygraph.guard(): 
                    x = fluid.layers.ones(shape=[1], dtype='float32') 
                    x.stop_gradient = False
                    y = x * x

                    # Since y = x * x, dx = 2 * x 
                    dx = fluid.dygraph.grad(
                            outputs=[y],
                            inputs=[x], 
                            create_graph=create_graph, 
                            retain_graph=True)[0]

                    z = y + dx

                    # If create_graph = False, the gradient of dx
                    # would not be backpropagated. Therefore,
                    # z = x * x + dx, and x.gradient() = 2 * x = 2.0
                    
                    # If create_graph = True, the gradient of dx
                    # would be backpropagated. Therefore, 
                    # z = x * x + dx = x * x + 2 * x, and
                    # x.gradient() = 2 * x + 2 = 4.0 

                    z.backward()
                    return x.gradient() 

            print(test_dygraph_grad(create_graph=False)) # [2.] 
            print(test_dygraph_grad(create_graph=True)) # [4.]

    Examples 2:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_dygraph()

            def test_dygraph_grad(grad_outputs=None):
                x = fluid.layers.fill_constant(shape=[1], value=2.0, dtype='float32')
                x.stop_gradient = False

                y1 = x * x
                y2 = x * 3 

                # If grad_outputs=None, dy1 = [1], dy2 = [1].
                # If grad_outputs=[g1, g2], then:
                #    - dy1 = [1] if g1 is None else g1
                #    - dy2 = [1] if g2 is None else g2

                # Since y1 = x * x, dx = 2 * x * dy1.
                # Since y2 = x * 3, dx = 3 * dy2.
                # Therefore, the final result would be:
                # dx = 2 * x * dy1 + 3 * dy2 = 4 * dy1 + 3 * dy2.

                dx = fluid.dygraph.grad(
                    outputs=[y1, y2], 
                    inputs=[x],
                    grad_outputs=grad_outputs)[0]

                return dx.numpy()

            THREE = fluid.layers.fill_constant(shape=[1], value=3.0, dtype='float32')
            FOUR = fluid.layers.fill_constant(shape=[1], value=4.0, dtype='float32')

            # dy1 = [1], dy2 = [1]
            print(test_dygraph_grad(None)) # [7.]

            # dy1 = [1], dy2 = [4]
            print(test_dygraph_grad([None, FOUR])) # [16.] 

            # dy1 = [4], dy2 = [1]
            print(test_dygraph_grad([FOUR, None])) # [19.]

            # dy1 = [3], dy2 = [4]
            print(test_dygraph_grad([THREE, FOUR])) # [24.]
	'''

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
    def check_in_out(in_out_list, name):
        assert in_out_list is not None, "{} should not be None".format(name)

        if isinstance(in_out_list, (list, tuple)):
            assert len(in_out_list) > 0, "{} cannot be empty".format(name)
            for each_var in in_out_list:
                assert isinstance(
                    each_var,
                    core.VarBase), "Elements of {} must be Variable".format(
                        name)
            return in_out_list
        else:
            assert isinstance(
                in_out_list,
                core.VarBase), "{} must be Variable or list of Variable".format(
                    name)
            return [in_out_list]

    outputs = check_in_out(outputs, 'outputs')
    inputs = check_in_out(inputs, 'inputs')

    if grad_outputs is not None:
        if not isinstance(grad_outputs, (list, tuple)):
            grad_outputs = [grad_outputs]

        for each_var in grad_outputs:
            if each_var is not None:
                assert isinstance(
                    each_var, core.VarBase
                ), "grad_outputs must be None, a Variable or a list containing None or Variables"
    else:
        grad_outputs = []

    if len(grad_outputs) > 0:
        assert len(grad_outputs) == len(
            outputs), "The length of grad_outputs must be equal to outputs"

Z
Zeng Jinle 已提交
527 528 529 530 531 532 533
    if no_grad_vars is None:
        no_grad_vars = []
    elif isinstance(no_grad_vars, core.VarBase):
        no_grad_vars = [no_grad_vars]
    elif isinstance(no_grad_vars, (list, tuple, set)):
        no_grad_vars = list(no_grad_vars)
        for var in no_grad_vars:
534
            assert isinstance(
Z
Zeng Jinle 已提交
535
                var, core.VarBase), "no_grad_vars can only contains Variable"
536 537
    else:
        raise AssertionError(
Z
Zeng Jinle 已提交
538
            "no_grad_vars must be None, Variable or list/tuple/set of Variables")
539 540 541 542 543 544 545 546 547

    if backward_strategy is None:
        backward_strategy = core.BackwardStrategy()

    assert isinstance(backward_strategy, core.BackwardStrategy), \
        "backward_strategy must be type paddle.fluid.dygraph.BackwardStrategy"

    assert isinstance(create_graph, bool), "create_graph must be True or False"

Z
Zeng Jinle 已提交
548 549 550 551 552 553 554 555 556 557 558
    if retain_graph is None:
        retain_graph = create_graph

    assert isinstance(retain_graph,
                      bool), "retain_graph must be None, True or False"

    assert isinstance(allow_unused, bool), "allow_unused must be True or False"

    assert isinstance(only_inputs, bool), "only_inputs must be True or False"
    assert only_inputs, "only_inputs=False is not supported yet"

559 560
    place = core.Place()
    place.set_place(framework._current_expected_place())
Z
Zeng Jinle 已提交
561 562 563
    return core.dygraph_partial_grad(
        inputs, outputs, grad_outputs, no_grad_vars, place, backward_strategy,
        create_graph, retain_graph, allow_unused, only_inputs)
564 565


566
@framework.dygraph_only
567
def to_variable(value, name=None, zero_copy=None):
568
    """
569 570
    The API will create a ``Variable`` or ``ComplexVariable`` object from 
    numpy\.ndarray, Variable or ComplexVariable object.
571

572
    Parameters:
573 574 575 576 577 578 579 580 581 582 583
        value(ndarray|Variable|ComplexVariable): The numpy\.ndarray, Variable 
            or ComplexVariable object that needs to be converted, it can be 
            multi-dimension, and the data type is one of numpy\.{float16, 
            float32, float64, int16, int32, int64, uint8, uint16, complex64, 
            complex128}.
        name(str, optional): The default value is None. Normally there is no 
            need for user to set this property. For more information, please 
            refer to :ref:`api_guide_Name` .
        zero_copy(bool, optional): Whether to share memory with the input numpy 
            array. This parameter only works with CPUPlace and will be set to 
            True when it is None. Default: None.
584

585
    Returns:
586
        Variable or ComplexVariable: If ``value`` is a numpy\.ndarray object, return ``Tensor`` created from the specified numpy\.ndarray object, which has same data type and shape with ``value``. If ``value`` is a Variable or ComplexVariable object, just return ``value``.
587

588 589 590 591 592 593 594 595

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

596
        with fluid.dygraph.guard(fluid.CPUPlace()):
597
            x = np.ones([2, 2], np.float32)
598 599 600
            y = fluid.dygraph.to_variable(x, zero_copy=False)
            x[0][0] = -1
            y[0][0].numpy()  # array([1.], dtype=float32)
601
            y = fluid.dygraph.to_variable(x)
602 603
            x[0][0] = 0
            y[0][0].numpy()  # array([0.], dtype=float32)
604 605 606 607
            c = np.array([2+1j, 2])
            z = fluid.dygraph.to_variable(c)
            z.numpy() # array([2.+1.j, 2.+0.j])
            z.dtype # 'complex128'
608
    """
609
    if isinstance(value, np.ndarray):
L
lujun 已提交
610 611
        assert framework.in_dygraph_mode(
        ), "to_variable could only be called in dygraph mode"
612 613 614 615 616 617
        if isinstance(framework._current_expected_place(),
                      framework.core.CPUPlace):
            if zero_copy is None:
                zero_copy = True
        else:
            assert not zero_copy, "zero_copy mode can only be used with CPUPlace"
618
            zero_copy = False
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
        if np.iscomplexobj(value):
            if not name:
                name = framework.unique_name.generate('_generated_var')
            real_var = core.VarBase(
                value=value.real,
                place=framework._current_expected_place(),
                persistable=False,
                zero_copy=zero_copy,
                name=name + ".real")
            imag_var = core.VarBase(
                value=value.imag,
                place=framework._current_expected_place(),
                persistable=False,
                zero_copy=zero_copy,
                name=name + ".imag")
            return framework.ComplexVariable(real_var, imag_var)
        else:
            py_var = core.VarBase(
                value=value,
                place=framework._current_expected_place(),
                persistable=False,
                zero_copy=zero_copy,
                name=name if name else '')
            return py_var
    elif isinstance(value, (core.VarBase, framework.Variable,
                            framework.ComplexVariable)):
645
        return value
646 647
    else:
        raise TypeError(
648 649
            "The type of input value is invalid, expected type is 'ndarray', "
            "'Variable' or 'ComplexVariable', but received %s." % type(value))