backward_test.cc 12.9 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

Y
Yu Yang 已提交
15
#include "paddle/framework/backward.h"
D
dongzhihong 已提交
16

Y
Yu Yang 已提交
17 18
#include <gtest/gtest.h>
#include "paddle/framework/op_registry.h"
Y
Yan Chunwei 已提交
19 20
#include "paddle/operators/net_op.h"
#include "paddle/operators/type_alias.h"
Y
Yu Yang 已提交
21

Y
Yu Yang 已提交
22 23 24 25 26
namespace paddle {
namespace framework {

class EmptyOp : public OperatorBase {
 public:
Y
Yu Yang 已提交
27 28
  void InferShape(const Scope &scope) const override {}
  void Run(const Scope &scope,
Y
Yu Yang 已提交
29 30 31
           const platform::DeviceContext &dev_ctx) const override {}
};

Y
Yu Yang 已提交
32
class RowWiseAddOpMaker : public OpProtoAndCheckerMaker {
Y
Yu Yang 已提交
33
 public:
Y
Yu Yang 已提交
34
  RowWiseAddOpMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yu Yang 已提交
35 36 37 38 39 40 41 42
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input X of Add").IgnoreGradient();
    AddInput("b", "Bias of Add").IgnoreGradient();
    AddOutput("Out", "Out of Add").IgnoreGradient();
    AddComment("Add Op");
  }
};

Y
Yu Yang 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
class MulOpMaker : public OpProtoAndCheckerMaker {
 public:
  MulOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("A", "A");
    AddInput("B", "B");
    AddOutput("Out", "Out");
    AddComment("Mul");
  }
};

class SigmoidOpMaker : public OpProtoAndCheckerMaker {
 public:
  SigmoidOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "X");
    AddOutput("Y", "Y");
    AddComment("Sigmoid");
  }
};

D
dongzhihong 已提交
64 65 66 67 68 69 70 71 72 73
class NoGradOpMaker : public OpProtoAndCheckerMaker {
 public:
  NoGradOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "X input");
    AddOutput("Y", "Y output");
    AddComment("NoGradOp, same input output. no Grad");
  }
};

Y
Yan Chunwei 已提交
74
class FcOp : public ops::NetOp {
Y
Yu Yang 已提交
75 76 77
 public:
  void Init() override {
    AddOp(OpRegistry::CreateOp("mul", {Input("X"), Input("W")},
Y
Yu Yang 已提交
78
                               {Output("mul_result")}, {}));
Y
Yu Yang 已提交
79
    auto b_name = Input("b");
Y
Yu Yang 已提交
80
    std::string before_act = "mul_result";
81
    if (b_name != kEmptyVarName) {
Y
Yu Yang 已提交
82 83 84 85 86
      AddOp(OpRegistry::CreateOp("rowwise_add", {Output("mul_result"), b_name},
                                 {Output("add_result")}, {}));
      before_act = "add_result";
    } else {
      auto out_varname = Output("add_result");
87 88
      if (out_varname != kEmptyVarName) {
        this->Rename(out_varname, kEmptyVarName);
Y
Yu Yang 已提交
89
      }
Y
Yu Yang 已提交
90
    }
Y
Yu Yang 已提交
91 92 93

    AddOp(OpRegistry::CreateOp("sigmoid", {Output(before_act)}, {Output("Out")},
                               {}));
Y
Yu Yang 已提交
94 95 96 97 98 99 100 101 102 103 104
    CompleteAddOp(false);
  }
};

class FcOpMaker : public OpProtoAndCheckerMaker {
 public:
  FcOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "x");
    AddInput("W", "w");
    AddInput("b", "b");
Y
Yu Yang 已提交
105 106
    AddOutput("mul_result", "").SetTemporary();
    AddOutput("add_result", "").SetTemporary();
Y
Yu Yang 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    AddOutput("Out", "");
    AddComment("");
  }
};

class ManyOutputOpMaker : public OpProtoAndCheckerMaker {
 public:
  ManyOutputOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("x", "x");
    AddOutput("y", "y");
    AddOutput("z", "z");
    AddComment("");
  }
};

class FillZeroOpMaker : public OpProtoAndCheckerMaker {
 public:
  FillZeroOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("x", "x");
    AddOutput("out", "out");
    AddComment("");
  }
};
Y
Yu Yang 已提交
132 133 134 135 136 137 138 139 140 141

class AddOpMaker : public OpProtoAndCheckerMaker {
 public:
  AddOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "x").SetMultiple();
    AddOutput("Y", "y");
    AddComment("");
  }
};
Y
Yu Yang 已提交
142 143 144 145
}  // namespace framework
}  // namespace paddle

namespace f = paddle::framework;
Y
Yu Yang 已提交
146 147 148 149 150 151 152
using EnforceNotMet = paddle::platform::EnforceNotMet;
REGISTER_OP(rowwise_add, f::EmptyOp, f::RowWiseAddOpMaker);
REGISTER_GRADIENT_OP(rowwise_add, rowwise_add_grad, f::EmptyOp);
REGISTER_OP(mul, f::EmptyOp, f::MulOpMaker);
REGISTER_GRADIENT_OP(mul, mul_grad, f::EmptyOp);
REGISTER_OP(sigmoid, f::EmptyOp, f::SigmoidOpMaker);
REGISTER_GRADIENT_OP(sigmoid, sigmoid_grad, f::EmptyOp);
D
dongzhihong 已提交
153
REGISTER_OP(nograd, f::EmptyOp, f::NoGradOpMaker);
Y
Yu Yang 已提交
154
REGISTER_OP(fill_zeros_like, f::EmptyOp, f::FillZeroOpMaker);
Y
Yu Yang 已提交
155 156
REGISTER_OP(add, f::EmptyOp, f::AddOpMaker);
REGISTER_GRADIENT_OP(add, add_grad, f::EmptyOp);
D
dongzhihong 已提交
157 158 159
REGISTER_OP(fc, f::FcOp, f::FcOpMaker);
REGISTER_OP(many_output_op, f::EmptyOp, f::ManyOutputOpMaker);
REGISTER_GRADIENT_OP(many_output_op, many_output_op_grad, f::EmptyOp);
Y
Yu Yang 已提交
160

Y
Yu Yang 已提交
161
TEST(Backward, simple_op_grad) {
Y
Yu Yang 已提交
162 163
  auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
  ASSERT_NE(fwd, nullptr);
Y
Yu Yang 已提交
164
  auto gop = f::OpRegistry::CreateGradOp(*fwd);
165
  ASSERT_EQ(4UL, gop->inputs_.size());
166
  ASSERT_EQ(f::kEmptyVarName, gop->inputs_[0]);
Y
Yu Yang 已提交
167
  ASSERT_EQ("rowwise_add_grad", gop->type_);
168 169
  ASSERT_EQ("X" + f::kGradVarSuffix, gop->outputs_[0]);
  ASSERT_EQ("b" + f::kGradVarSuffix, gop->outputs_[1]);
Y
Yu Yang 已提交
170

Y
Yi Wang 已提交
171
  ASSERT_EQ("X" + f::kGradVarSuffix, gop->Output("X" + f::kGradVarSuffix));
Y
Yu Yang 已提交
172 173
}

D
dongzhihong 已提交
174
TEST(Backward, simple_op_not_need_grad) {
D
dongzhihong 已提交
175
  auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
D
dongzhihong 已提交
176
  ASSERT_NE(fwd, nullptr);
D
dongzhihong 已提交
177
  auto gop = f::Backward(*fwd, {"X"});
D
dongzhihong 已提交
178
  ASSERT_EQ(std::find(gop->outputs_.begin(), gop->outputs_.end(),
179
                      "X" + f::kGradVarSuffix),
D
dongzhihong 已提交
180
            gop->outputs_.end());
D
dongzhihong 已提交
181

D
dongzhihong 已提交
182 183
  auto no_input_gop = f::Backward(*fwd, {"X", "b"});
  ASSERT_NE(no_input_gop, nullptr);
Y
Yu Yang 已提交
184
  ASSERT_TRUE(no_input_gop->IsNetOp());
Y
Yan Chunwei 已提交
185 186
  ASSERT_EQ(0UL,
            std::static_pointer_cast<ops::NetOp>(no_input_gop)->ops_.size());
D
dongzhihong 已提交
187 188
}

Y
Yu Yang 已提交
189
TEST(Backward, net_fc_backward_normal) {
Y
Yu Yang 已提交
190
  std::shared_ptr<f::OperatorBase> fwd = f::OpRegistry::CreateOp(
Y
Yu Yang 已提交
191
      "fc", {"X", "w", "b"}, {"mul_result", "add_result", "out"}, {});
Y
Stash  
Yu Yang 已提交
192 193 194
  ASSERT_NE(fwd, nullptr);
  std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
  ASSERT_TRUE(gop->IsNetOp());
Y
Yan Chunwei 已提交
195
  auto net = static_cast<ops::NetOp *>(gop.get());
Y
Stash  
Yu Yang 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

  ASSERT_NO_THROW(net->DebugString());

  ASSERT_EQ(3UL, net->ops_.size());

  f::OperatorBase &d_sigmoid = *net->ops_[0];
  ASSERT_EQ("sigmoid_grad", d_sigmoid.type_);

  f::OperatorBase &d_add = *net->ops_[1];
  ASSERT_EQ("rowwise_add_grad", d_add.type_);

  f::OperatorBase &d_mul = *net->ops_[2];
  ASSERT_EQ("mul_grad", d_mul.type_);
}

Y
Yu Yang 已提交
211
TEST(Backward, net_fc_backward_not_have_b) {
Y
Yi Wang 已提交
212 213 214
  std::shared_ptr<f::OperatorBase> fwd =
      f::OpRegistry::CreateOp("fc", {"X", "w", f::kEmptyVarName},
                              {"mul_result", "add_result", "tmp"}, {});
Y
Stash  
Yu Yang 已提交
215 216 217
  ASSERT_NE(fwd, nullptr);
  std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
  ASSERT_TRUE(gop->IsNetOp());
Y
Yan Chunwei 已提交
218
  auto net = static_cast<ops::NetOp *>(gop.get());
Y
Stash  
Yu Yang 已提交
219 220 221 222 223 224 225 226 227 228 229 230

  ASSERT_NO_THROW(net->DebugString());

  ASSERT_EQ(2UL, net->ops_.size());

  f::OperatorBase &d_sigmoid = *net->ops_[0];
  ASSERT_EQ("sigmoid_grad", d_sigmoid.type_);

  f::OperatorBase &d_mul = *net->ops_[1];
  ASSERT_EQ("mul_grad", d_mul.type_);
}

Y
Yu Yang 已提交
231
TEST(Backward, net_input_of_network_not_need_grad) {
Y
Yan Chunwei 已提交
232
  ops::NetOp net;
Y
Yu Yang 已提交
233
  net.AddOp(f::OpRegistry::CreateOp("fc", {"X", "W1", "b1"},
Y
Yu Yang 已提交
234
                                    {"mul_tmp_0", "add_tmp_0", "hidden0"}, {}));
Y
Yu Yang 已提交
235
  net.AddOp(f::OpRegistry::CreateOp("fc", {"hidden0", "W2", "b2"},
Y
Yu Yang 已提交
236
                                    {"mul_tmp_1", "add_tmp_1", "hidden1"}, {}));
Y
Yu Yang 已提交
237
  net.CompleteAddOp();
Y
Stash  
Yu Yang 已提交
238 239
  auto bwd = Backward(net, {"X"});  // X@GRAD is not need.
  ASSERT_TRUE(bwd->IsNetOp());
Y
Yan Chunwei 已提交
240
  auto bwd_net = static_cast<ops::NetOp *>(bwd.get());
Y
Stash  
Yu Yang 已提交
241 242 243

  std::unordered_set<std::string> all_output = std::unordered_set<std::string>(
      bwd_net->outputs_.begin(), bwd_net->outputs_.end());
244
  all_output.erase(f::kEmptyVarName);
Y
Stash  
Yu Yang 已提交
245 246

  for (auto &out : {"W1", "b1", "hidden0", "W2", "b2"}) {
Y
Yi Wang 已提交
247
    ASSERT_NE(all_output.find(out + f::kGradVarSuffix), all_output.end());
Y
Stash  
Yu Yang 已提交
248
  }
Y
Yu Yang 已提交
249 250

  // Not Generated X
Y
Yi Wang 已提交
251
  ASSERT_EQ(all_output.find("X" + f::kGradVarSuffix), all_output.end());
Y
Yu Yang 已提交
252

D
dongzhihong 已提交
253
  ASSERT_EQ(2UL, bwd_net->ops_.size());
Y
Yu Yang 已提交
254
  ASSERT_TRUE(bwd_net->ops_[1]->IsNetOp());
Y
Yan Chunwei 已提交
255
  auto first_fc_grad = static_cast<ops::NetOp *>(bwd_net->ops_[1].get());
D
dongzhihong 已提交
256
  ASSERT_EQ(3UL, first_fc_grad->ops_.size());
Y
Yi Wang 已提交
257 258
  ASSERT_EQ(f::kEmptyVarName,
            first_fc_grad->ops_[2]->Output("A" + f::kGradVarSuffix));
Y
Yu Yang 已提交
259 260 261
}

TEST(Backward, net_shared_weight) {
Y
Yan Chunwei 已提交
262
  ops::NetOp net;
Y
Yu Yang 已提交
263 264 265 266 267 268
  net.AddOp(f::OpRegistry::CreateOp("mul", {"X", "W"}, {"Out"}, {}));
  net.AddOp(f::OpRegistry::CreateOp("mul", {"Out", "W"}, {"FinalOut"}, {}));
  net.CompleteAddOp();

  auto bwd = f::Backward(net, {});
  ASSERT_TRUE(bwd->IsNetOp());
Y
Yan Chunwei 已提交
269
  auto bwd_net = static_cast<ops::NetOp *>(bwd.get());
Y
Yu Yang 已提交
270
  ASSERT_EQ(3UL, bwd_net->ops_.size());
Y
Yu Yang 已提交
271
  ASSERT_EQ("add", bwd_net->ops_[2]->type_);
Y
Stash  
Yu Yang 已提交
272 273
}

Y
Yu Yang 已提交
274
TEST(Backward, op_register_grad_not_for_network) {
Y
Yu Yang 已提交
275 276 277
  auto fwd = f::OpRegistry::CreateOp(
      "fc", {"X", "W", "b"}, {"mul_out", "add_out", "out1"},
      {{"temporary_index", std::vector<int>{0, 1}}});
D
dongzhihong 已提交
278

Y
Yu Yang 已提交
279 280 281
  ASSERT_THROW(f::OpRegistry::CreateGradOp(*fwd), EnforceNotMet);
}

Y
Yu Yang 已提交
282
TEST(Backward, op_all_input_are_not_need) {
Y
Yu Yang 已提交
283 284 285
  auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
  auto backward = f::Backward(*fwd, {"X", "b"});
  ASSERT_TRUE(backward->IsNetOp());
Y
Yan Chunwei 已提交
286
  auto net = static_cast<ops::NetOp *>(backward.get());
Y
Yu Yang 已提交
287 288 289
  ASSERT_TRUE(net->ops_.empty());
}

Y
Yu Yang 已提交
290
TEST(Backward, op_all_output_are_not_need) {
Y
Yu Yang 已提交
291 292 293
  auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
  auto backward = f::Backward(*fwd, {"Out"});
  ASSERT_TRUE(backward->IsNetOp());
Y
Yan Chunwei 已提交
294
  auto net = static_cast<ops::NetOp *>(backward.get());
Y
Yu Yang 已提交
295 296 297
  ASSERT_TRUE(net->ops_.empty());
}

Y
Yu Yang 已提交
298
TEST(Backward, op_part_of_output_are_not_need) {
Y
Yu Yang 已提交
299 300 301
  auto fwd = f::OpRegistry::CreateOp("many_output_op", {"X"}, {"Y", "Z"}, {});
  auto backward = f::Backward(*fwd, {"Z"});
  ASSERT_TRUE(backward->IsNetOp());
Y
Yan Chunwei 已提交
302
  auto net = static_cast<ops::NetOp *>(backward.get());
Y
Stash  
Yu Yang 已提交
303
  ASSERT_EQ(net->ops_.size(), 2UL);
Y
Yu Yang 已提交
304 305 306

  auto &fill_zero = *net->ops_[0];
  ASSERT_EQ("fill_zeros_like", fill_zero.type_);
307
  ASSERT_EQ(1UL, fill_zero.inputs_.size());
Y
Yu Yang 已提交
308
  ASSERT_EQ("Z", fill_zero.inputs_[0]);
309
  ASSERT_EQ(1UL, fill_zero.outputs_.size());
310
  ASSERT_EQ("Z" + f::kZeroVarSuffix, fill_zero.outputs_[0]);
Y
Yu Yang 已提交
311 312 313

  auto &d_many_out = *net->ops_[1];
  ASSERT_EQ("many_output_op_grad", d_many_out.type_);
314
  ASSERT_EQ(1UL + 2UL + 2UL, d_many_out.inputs_.size());  // I/O/OG
Y
Yi Wang 已提交
315 316
  ASSERT_EQ("Z" + f::kZeroVarSuffix, d_many_out.Input("z" + f::kGradVarSuffix));
  ASSERT_EQ("Y" + f::kGradVarSuffix, d_many_out.Input("y" + f::kGradVarSuffix));
317 318
  ASSERT_EQ("X" + f::kGradVarSuffix,
            d_many_out.Output("x" + f::kGradVarSuffix));
Y
Yu Yang 已提交
319 320
}

Y
Yu Yang 已提交
321
TEST(Backward, op_part_of_input_are_not_need) {
322 323
  auto fwd = f::OpRegistry::CreateOp("mul", {"a", "b"}, {"out"}, {});
  auto backward = f::Backward(*fwd, {"a"});
D
dongzhihong 已提交
324
  auto &grad_mul = *backward;
325 326 327
  ASSERT_EQ(grad_mul.type_, "mul_grad");
  ASSERT_EQ(grad_mul.inputs_.size(), 2UL + 1UL + 1UL);
  ASSERT_EQ(grad_mul.outputs_.size(), 2UL);
Y
Yi Wang 已提交
328 329
  ASSERT_EQ(grad_mul.Output("A" + f::kGradVarSuffix), f::kEmptyVarName);
  ASSERT_EQ(grad_mul.Output("B" + f::kGradVarSuffix), "b" + f::kGradVarSuffix);
330 331
  ASSERT_EQ(grad_mul.Input("Out" + f::kGradVarSuffix),
            "out" + f::kGradVarSuffix);
332 333 334 335 336
  ASSERT_EQ(grad_mul.Input("A"), "a");
  ASSERT_EQ(grad_mul.Input("B"), "b");
  ASSERT_EQ(grad_mul.Input("Out"), "out");
}

F
fengjiayi 已提交
337
TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
Y
Yan Chunwei 已提交
338
  ops::NetOp net;
Y
Yu Yang 已提交
339 340 341 342 343 344
  net.AddOp(f::OpRegistry::CreateOp("fc", {"x1", "w1", "b1"},
                                    {"mul_out1", "add_out1", "out1"}, {}));
  net.AddOp(f::OpRegistry::CreateOp("fc", {"out1", "w2", "b2"},
                                    {"mul_out2", "tmp_out2", "out2"}, {}));
  net.AddOp(f::OpRegistry::CreateOp("fc", {"out2", "w3", "b3"},
                                    {"mul_out3", "tmp_out3", "out3"}, {}));
345
  net.CompleteAddOp();
346
  auto backward = f::Backward(net, {"mul_out2", "tmp_out2", "out2"});
347
  ASSERT_TRUE(backward->IsNetOp());
Y
Yan Chunwei 已提交
348
  auto bwd_net = static_cast<ops::NetOp *>(backward.get());
349
  ASSERT_EQ(bwd_net->ops_.size(), 3UL);
350
  auto &grad_fc = *bwd_net->ops_[0];
351 352 353 354 355 356 357 358
  EXPECT_EQ(grad_fc.inputs_.size(),
            3UL       /* external input number */
                + 1UL /* external output number*/
                + 1UL /* number of gradient of external output*/
                + 2U /* internal variable number*/);
  EXPECT_EQ(grad_fc.outputs_.size(), 2UL       /* input number of mul*/
                                         + 2UL /* input number of rowwise_add */
                                         + 1UL /* input number of sigmod */);
F
fengjiayi 已提交
359 360 361 362
  EXPECT_EQ(bwd_net->ops_[1]->inputs_.size(), 0UL);
  EXPECT_EQ(bwd_net->ops_[1]->outputs_.size(), 0UL);
  EXPECT_EQ(bwd_net->ops_[2]->inputs_.size(), 0UL);
  EXPECT_EQ(bwd_net->ops_[2]->outputs_.size(), 0UL);
D
dongzhihong 已提交
363
}