gpu_info.cc 16.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/platform/device/gpu/gpu_info.h"
16

W
Wilber 已提交
17
#include <array>
18 19
#include <cstdlib>
#include <mutex>
F
From00 已提交
20
#include <set>
21 22
#include <vector>
#include "gflags/gflags.h"
23
#include "paddle/fluid/memory/memory.h"
24
#include "paddle/fluid/platform/cuda_device_guard.h"
25
#include "paddle/fluid/platform/enforce.h"
26
#include "paddle/fluid/platform/flags.h"
27 28 29 30 31 32 33
#include "paddle/fluid/platform/lock_guard_ptr.h"
#include "paddle/fluid/platform/macros.h"
#include "paddle/fluid/platform/monitor.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/string/split.h"
#include "paddle/phi/backends/gpu/gpu_info.h"

34 35 36 37 38 39
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/dynload/miopen.h"
#else
#include "paddle/fluid/platform/device/gpu/cuda/cuda_graph.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
#endif
40

41 42 43 44 45
#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10020
#include "paddle/fluid/platform/dynload/cuda_driver.h"
#endif
#endif
W
Wilber 已提交
46

47 48 49 50 51 52
DECLARE_double(fraction_of_gpu_memory_to_use);
DECLARE_uint64(initial_gpu_memory_in_mb);
DECLARE_uint64(reallocate_gpu_memory_in_mb);
DECLARE_bool(enable_cublas_tensor_op_math);
DECLARE_uint64(gpu_memory_limit_mb);

53 54 55
PADDLE_DEFINE_EXPORTED_bool(enable_gpu_memory_usage_log, false,
                            "Whether to print the message of gpu memory usage "
                            "at exit, mainly used for UT and CI.");
56 57 58
PADDLE_DEFINE_EXPORTED_bool(enable_gpu_memory_usage_log_mb, true,
                            "Whether to print the message of gpu memory usage "
                            "MB as a unit of measurement.");
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
constexpr static float fraction_reserve_gpu_memory = 0.05f;

USE_GPU_MEM_STAT;
namespace paddle {
namespace platform {

void GpuMemoryUsage(size_t *available, size_t *total) {
  size_t actual_available, actual_total;
  RecordedGpuMemGetInfo(available, total, &actual_available, &actual_total,
                        platform::GetCurrentDeviceId());
}

size_t GpuAvailableMemToAlloc() {
  size_t total = 0;
  size_t available = 0;
  GpuMemoryUsage(&available, &total);
  size_t reserving =
      static_cast<size_t>(fraction_reserve_gpu_memory * available);
  // If available size is less than minimum chunk size, no usable memory exists
  size_t available_to_alloc = available - reserving;
  size_t min_chunk_size = GpuMinChunkSize();
  if (available_to_alloc < min_chunk_size) {
    available_to_alloc = 0;
  }
  VLOG(10) << "GPU usage " << (available >> 20) << "M/" << (total >> 20)
           << "M, " << (available_to_alloc >> 20) << "M available to allocate";
  return available_to_alloc;
}

size_t GpuMaxAllocSize() {
  return std::max(GpuInitAllocSize(), GpuReallocSize());
}

static size_t GpuAllocSize(bool realloc) {
  size_t available_to_alloc = GpuAvailableMemToAlloc();
  PADDLE_ENFORCE_GT(
      available_to_alloc, 0,
      platform::errors::ResourceExhausted("Not enough available GPU memory."));
  // If FLAGS_initial_gpu_memory_in_mb is 0, then initial memory will be
  // allocated by fraction
  size_t flag_mb = realloc ? FLAGS_reallocate_gpu_memory_in_mb
                           : FLAGS_initial_gpu_memory_in_mb;
  size_t alloc_bytes =
      (flag_mb > 0ul ? flag_mb << 20 : available_to_alloc *
                                           FLAGS_fraction_of_gpu_memory_to_use);
  PADDLE_ENFORCE_GE(
      available_to_alloc, alloc_bytes,
      platform::errors::ResourceExhausted("Not enough available GPU memory."));
  VLOG(10) << "Alloc size is " << (alloc_bytes >> 20)
           << " MiB, is it Re-alloc: " << realloc;
  return alloc_bytes;
}

size_t GpuInitAllocSize() { return GpuAllocSize(/* realloc = */ false); }

size_t GpuReallocSize() { return GpuAllocSize(/* realloc = */ true); }

size_t GpuMinChunkSize() {
  // Allow to allocate the minimum chunk size is 256 bytes.
  return 1 << 8;
}

size_t GpuMaxChunkSize() {
  size_t max_chunk_size = GpuMaxAllocSize();
  VLOG(10) << "Max chunk size " << (max_chunk_size >> 20) << "M";
  return max_chunk_size;
}

static void RaiseNonOutOfMemoryError(gpuError_t *status) {
  if (*status == gpuErrorOutOfMemory) {
    *status = gpuSuccess;
  }
  PADDLE_ENFORCE_GPU_SUCCESS(*status);

  *status = platform::GpuGetLastError();
  if (*status == gpuErrorOutOfMemory) {
    *status = gpuSuccess;
  }
  PADDLE_ENFORCE_GPU_SUCCESS(*status);
}

class RecordedGpuMallocHelper {
 private:
  explicit RecordedGpuMallocHelper(int dev_id, uint64_t limit_size = 0)
      : dev_id_(dev_id), limit_size_(limit_size) {
    if (NeedRecord()) {
      mtx_.reset(new std::mutex());
    }
148 149 150 151

    if (FLAGS_enable_gpu_memory_usage_log) {
      // A fake UPDATE to trigger the construction of memory stat instances,
      // make sure that they are destructed after RecordedGpuMallocHelper.
152 153
      DEVICE_MEMORY_STAT_UPDATE(Reserved, dev_id, 0);
      DEVICE_MEMORY_STAT_UPDATE(Allocated, dev_id, 0);
154
    }
155 156 157 158 159
  }

  DISABLE_COPY_AND_ASSIGN(RecordedGpuMallocHelper);

 public:
160 161
  ~RecordedGpuMallocHelper() {
    if (FLAGS_enable_gpu_memory_usage_log) {
162 163
      if (FLAGS_enable_gpu_memory_usage_log_mb) {
        std::cout << "[Memory Usage (MB)] gpu " << dev_id_ << " : Reserved = "
164 165
                  << DEVICE_MEMORY_STAT_PEAK_VALUE(Reserved, dev_id_) /
                         1048576.0
166
                  << ", Allocated = "
167 168
                  << DEVICE_MEMORY_STAT_PEAK_VALUE(Allocated, dev_id_) /
                         1048576.0
169 170 171
                  << std::endl;
      } else {
        std::cout << "[Memory Usage (Byte)] gpu " << dev_id_ << " : Reserved = "
172
                  << DEVICE_MEMORY_STAT_PEAK_VALUE(Reserved, dev_id_)
173
                  << ", Allocated = "
174 175
                  << DEVICE_MEMORY_STAT_PEAK_VALUE(Allocated, dev_id_)
                  << std::endl;
176
      }
177 178 179
    }
  }

180
  static RecordedGpuMallocHelper *Instance(int dev_id) {
181 182
    static std::vector<std::unique_ptr<RecordedGpuMallocHelper>> instances_;

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
    std::call_once(once_flag_, [] {
      int dev_cnt = GetGPUDeviceCount();
      instances_.reserve(dev_cnt);
      for (int i = 0; i < dev_cnt; ++i) {
        instances_.emplace_back(
            new RecordedGpuMallocHelper(i, FLAGS_gpu_memory_limit_mb << 20));
      }
    });

    PADDLE_ENFORCE_GE(
        dev_id, 0,
        platform::errors::OutOfRange(
            "Device id must be not less than 0, but got %d.", dev_id));
    PADDLE_ENFORCE_LT(
        dev_id, instances_.size(),
        platform::errors::OutOfRange("Device id %d exceeds gpu card number %d.",
                                     dev_id, instances_.size()));
    return instances_[dev_id].get();
  }

  /**
   * Try to allocate `size` gpu memory. Only cudaErrorMemoryAllocation
   * or cudaSuccess would be returned, and the cudaGetLastError() flag
   * would be clear.
   */
208 209
  gpuError_t Malloc(void **ptr, size_t size,
                    bool malloc_managed_memory = false) {
210 211 212 213 214 215
    LockGuardPtr<std::mutex> lock(mtx_);
    if (UNLIKELY(NeedRecord() && cur_size_.load() + size > limit_size_)) {
      return gpuErrorOutOfMemory;
    }

    CUDADeviceGuard guard(dev_id_);
216
    gpuError_t result;
217
#ifdef PADDLE_WITH_HIP
218 219 220 221 222
    if (UNLIKELY(malloc_managed_memory)) {
      result = hipMallocManaged(ptr, size);
    } else {
      result = hipMalloc(ptr, size);
    }
223 224
#else
    CUDAGraphCaptureModeGuard capture_mode_guard;
225 226 227 228
    if (UNLIKELY(malloc_managed_memory)) {
      result = cudaMallocManaged(ptr, size);
    } else {
      result = cudaMalloc(ptr, size);
229 230
      VLOG(10) << "[cudaMalloc] size=" << static_cast<double>(size) / (1 << 20)
               << " MB, result=" << result;
231
    }
232 233 234 235
#endif
    if (result == gpuSuccess) {
      cur_size_.fetch_add(size);
      STAT_INT_ADD("STAT_gpu" + std::to_string(dev_id_) + "_mem_size", size);
236
      DEVICE_MEMORY_STAT_UPDATE(Reserved, dev_id_, size);
F
From00 已提交
237 238 239 240 241

#ifdef PADDLE_WITH_TESTING
      gpu_ptrs.insert(*ptr);
#endif

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
      return gpuSuccess;
    } else {
      RaiseNonOutOfMemoryError(&result);
      // Non out of memory error would be raised inside
      // RaiseNonOutOfMemoryError. Therefore, we can
      // return cudaErrorMemoryAllocation directly here.
      return gpuErrorOutOfMemory;
    }
  }

  /**
   * Free gpu memory. Usually, free is not allowed to raise error.
   * If it does raise error, the process should be crashed.
   */
  void Free(void *ptr, size_t size) {
    // Purposefully allow cudaErrorCudartUnloading, because
    // that is returned if you ever call cudaFree after the
    // driver has already shutdown. This happens only if the
    // process is terminating, in which case we don't care if
    // cudaFree succeeds.
    CUDADeviceGuard guard(dev_id_);
#ifdef PADDLE_WITH_HIP
    auto err = hipFree(ptr);
    if (err != hipErrorDeinitialized) {
#else
    auto err = cudaFree(ptr);
268 269
    VLOG(10) << "[cudaFree] size=" << static_cast<double>(size) / (1 << 20)
             << " MB";
270 271 272 273 274
    if (err != cudaErrorCudartUnloading) {
#endif
      PADDLE_ENFORCE_GPU_SUCCESS(err);
      cur_size_.fetch_sub(size);
      STAT_INT_SUB("STAT_gpu" + std::to_string(dev_id_) + "_mem_size", size);
275
      DEVICE_MEMORY_STAT_UPDATE(Reserved, dev_id_, -size);
276 277 278 279 280
    } else {
      platform::GpuGetLastError();  // clear the error flag when
                                    // cudaErrorCudartUnloading /
                                    // hipErrorDeinitialized
    }
F
From00 已提交
281 282 283 284 285 286
#ifdef PADDLE_WITH_TESTING
    gpu_ptrs.erase(ptr);
#endif
  }

  void *GetBasePtr(void *ptr) {
F
From00 已提交
287
#ifdef PADDLE_WITH_TESTING
F
From00 已提交
288 289 290 291 292
    auto it = gpu_ptrs.upper_bound(ptr);
    if (it == gpu_ptrs.begin()) {
      return nullptr;
    }
    return *(--it);
F
From00 已提交
293 294 295 296 297
#else
    PADDLE_THROW(platform::errors::Unimplemented(
        "The RecordedGpuMallocHelper::GetBasePtr is only implemented with "
        "testing, should not use for release."));
    return nullptr;
F
From00 已提交
298
#endif
F
From00 已提交
299
  }
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

  bool GetMemInfo(size_t *avail, size_t *total, size_t *actual_avail,
                  size_t *actual_total) {
    {
      CUDADeviceGuard guard(dev_id_);
#ifdef PADDLE_WITH_HIP
      auto result = hipMemGetInfo(actual_avail, actual_total);
#else
      auto result = cudaMemGetInfo(actual_avail, actual_total);
#endif
      if (result != gpuSuccess) {
        *actual_avail = 0;
      }
      RaiseNonOutOfMemoryError(&result);
    }

    if (NeedRecord()) {
      std::lock_guard<std::mutex> guard(*mtx_);
      *avail = std::min(*actual_avail, limit_size_ - cur_size_.load());
      *total = std::min(*actual_total, limit_size_);
      return *total < *actual_total;
    } else {
      *avail = *actual_avail;
      *total = *actual_total;
      return false;
    }
  }

  inline bool NeedRecord() const { return limit_size_ != 0; }

  uint64_t RecordedSize() const { return cur_size_.load(); }

  uint64_t LimitSize() const { return limit_size_; }

#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10020
  CUresult MemCreate(CUmemGenericAllocationHandle *handle, size_t size,
                     const CUmemAllocationProp *prop,
                     unsigned long long flags) {  // NOLINT
    auto result =
        paddle::platform::dynload::cuMemCreate(handle, size, prop, flags);
    if (result == CUDA_SUCCESS) {
      cur_size_.fetch_add(size);
    }
    return result;
  }

  CUresult MemRelease(CUmemGenericAllocationHandle handle, size_t size) {
    auto result = paddle::platform::dynload::cuMemRelease(handle);
    if (result == CUDA_SUCCESS) {
      cur_size_.fetch_sub(size);
    }
    return result;
  }

#endif
#endif

 private:
  const int dev_id_;
  const uint64_t limit_size_;
  std::atomic<uint64_t> cur_size_{0};

  mutable std::unique_ptr<std::mutex> mtx_;

  static std::once_flag once_flag_;
F
From00 已提交
366 367 368

  std::set<void *> gpu_ptrs;  // just for testing
};                            // NOLINT
369 370 371

std::once_flag RecordedGpuMallocHelper::once_flag_;

372 373 374 375
gpuError_t RecordedGpuMalloc(void **ptr, size_t size, int dev_id,
                             bool malloc_managed_memory) {
  return RecordedGpuMallocHelper::Instance(dev_id)->Malloc(
      ptr, size, malloc_managed_memory);
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
}

void RecordedGpuFree(void *p, size_t size, int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->Free(p, size);
}

#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10020
CUresult RecordedGpuMemCreate(CUmemGenericAllocationHandle *handle, size_t size,
                              const CUmemAllocationProp *prop,
                              unsigned long long flags, int dev_id) {  // NOLINT
  return RecordedGpuMallocHelper::Instance(dev_id)->MemCreate(handle, size,
                                                              prop, flags);
}

CUresult RecordedGpuMemRelease(CUmemGenericAllocationHandle handle, size_t size,
                               int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->MemRelease(handle, size);
}
#endif
#endif

bool RecordedGpuMemGetInfo(size_t *avail, size_t *total, size_t *actual_avail,
                           size_t *actual_total, int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->GetMemInfo(
      avail, total, actual_avail, actual_total);
}

uint64_t RecordedGpuMallocSize(int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->RecordedSize();
}

408 409 410 411
uint64_t RecordedGpuLimitSize(int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->LimitSize();
}

412 413 414 415 416 417 418 419 420 421 422
bool IsGpuMallocRecorded(int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->NeedRecord();
}

void EmptyCache(void) {
  std::vector<int> devices = GetSelectedDevices();
  for (auto device : devices) {
    memory::Release(CUDAPlace(device));
  }
}

423
bool IsGPUManagedMemorySupported(int dev_id) {
424
  return phi::backends::gpu::IsGPUManagedMemorySupported(dev_id);
425 426 427
}

bool IsGPUManagedMemoryOversubscriptionSupported(int dev_id) {
428
  return phi::backends::gpu::IsGPUManagedMemoryOversubscriptionSupported(
429 430 431
      dev_id);
}

F
From00 已提交
432 433 434 435
void *GetGpuBasePtr(void *ptr, int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->GetBasePtr(ptr);
}

436
int DnnVersion() { return phi::backends::gpu::DnnVersion(); }
W
Wilber 已提交
437

438
int GetGPUDeviceCount() { return phi::backends::gpu::GetGPUDeviceCount(); }
W
Wilber 已提交
439 440

int GetGPUComputeCapability(int id) {
441
  return phi::backends::gpu::GetGPUComputeCapability(id);
W
Wilber 已提交
442 443 444
}

int GetGPURuntimeVersion(int id) {
445
  return phi::backends::gpu::GetGPURuntimeVersion(id);
W
Wilber 已提交
446 447 448
}

int GetGPUDriverVersion(int id) {
449
  return phi::backends::gpu::GetGPUDriverVersion(id);
W
Wilber 已提交
450 451
}

452
bool TensorCoreAvailable() { return phi::backends::gpu::TensorCoreAvailable(); }
W
Wilber 已提交
453 454

int GetGPUMultiProcessors(int id) {
455
  return phi::backends::gpu::GetGPUMultiProcessors(id);
W
Wilber 已提交
456 457 458
}

int GetGPUMaxThreadsPerMultiProcessor(int id) {
459
  return phi::backends::gpu::GetGPUMaxThreadsPerMultiProcessor(id);
W
Wilber 已提交
460 461 462
}

int GetGPUMaxThreadsPerBlock(int id) {
463
  return phi::backends::gpu::GetGPUMaxThreadsPerBlock(id);
W
Wilber 已提交
464 465
}

466
int GetCurrentDeviceId() { return phi::backends::gpu::GetCurrentDeviceId(); }
W
Wilber 已提交
467 468

std::array<int, 3> GetGpuMaxGridDimSize(int id) {
469
  return phi::backends::gpu::GetGpuMaxGridDimSize(id);
W
Wilber 已提交
470 471 472
}

std::vector<int> GetSelectedDevices() {
473
  return phi::backends::gpu::GetSelectedDevices();
W
Wilber 已提交
474 475 476
}

const gpuDeviceProp &GetDeviceProperties(int id) {
477
  return phi::backends::gpu::GetDeviceProperties(id);
W
Wilber 已提交
478 479
}

480
void SetDeviceId(int device_id) { phi::backends::gpu::SetDeviceId(device_id); }
W
Wilber 已提交
481

482
gpuError_t GpuGetLastError() { return phi::backends::gpu::GpuGetLastError(); }
W
Wilber 已提交
483 484

void GpuStreamSync(gpuStream_t stream) {
485
  phi::backends::gpu::GpuStreamSync(stream);
W
Wilber 已提交
486 487 488
}

void GpuDestroyStream(gpuStream_t stream) {
489
  phi::backends::gpu::GpuDestroyStream(stream);
W
Wilber 已提交
490 491
}

492
void GpuDeviceSync() { phi::backends::gpu::GpuDeviceSync(); }
W
Wilber 已提交
493 494 495

void GpuMemcpyAsync(void *dst, const void *src, size_t count,
                    gpuMemcpyKind kind, gpuStream_t stream) {
496
  phi::backends::gpu::GpuMemcpyAsync(dst, src, count, kind, stream);
W
Wilber 已提交
497 498 499 500
}

void GpuMemcpySync(void *dst, const void *src, size_t count,
                   gpuMemcpyKind kind) {
501
  phi::backends::gpu::GpuMemcpySync(dst, src, count, kind);
W
Wilber 已提交
502 503 504 505
}

void GpuMemcpyPeerAsync(void *dst, int dst_device, const void *src,
                        int src_device, size_t count, gpuStream_t stream) {
506 507
  phi::backends::gpu::GpuMemcpyPeerAsync(dst, dst_device, src, src_device,
                                         count, stream);
W
Wilber 已提交
508 509 510 511
}

void GpuMemcpyPeerSync(void *dst, int dst_device, const void *src,
                       int src_device, size_t count) {
512 513
  phi::backends::gpu::GpuMemcpyPeerSync(dst, dst_device, src, src_device,
                                        count);
W
Wilber 已提交
514 515 516
}

void GpuMemsetAsync(void *dst, int value, size_t count, gpuStream_t stream) {
517
  phi::backends::gpu::GpuMemsetAsync(dst, value, count, stream);
W
Wilber 已提交
518 519
}

520 521
}  // namespace platform
}  // namespace paddle