main.py 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .context import Context


def launch():
    """
    Paddle distribution training entry ``python -m paddle.distributed.launch``.
    
    Usage:
        .. code-block:: bash
            :name: code-block-bash1

            python -m paddle.distributed.launch [-h] [--master MASTER] [--rank RANK]
                   [--log_level LOG_LEVEL] [--nnodes NNODES]
                   [--nproc_per_node NPROC_PER_NODE] [--log_dir LOG_DIR]
                   [--run_mode RUN_MODE] [--job_id JOB_ID] [--devices DEVICES]
                   [--host HOST] [--servers SERVERS] [--trainers TRAINERS]
                   [--trainer_num TRAINER_NUM] [--server_num SERVER_NUM]
                   [--gloo_port GLOO_PORT] [--with_gloo WITH_GLOO]
                   [--max_restart MAX_RESTART] [--elastic_level ELASTIC_LEVEL]
                   [--elastic_timeout ELASTIC_TIMEOUT]
                   training_script ...


    Base Parameters:
        - ``--master``: The master/rendezvous server, support http:// and etcd://, default with http://. e.g., ``--master=127.0.0.1:8080``. Default ``--log_dir=None``.

        - ``--rank``: The rank of the node, can be auto assigned by master. Default ``--rank=-1``.

        - ``--log_level``: The log levl to set for logging.setLevel. Default ``--log_level=INFO``.

        - ``--nnodes``: The number of nodes for a distributed job, it can be a range in elastic mode, e.g., ``--nnnodes=2:3``. Default ``--nnodes=1``.

        - ``--nproc_per_node``: The number of processes to launch on a node. In gpu training, it should be less or equal to the gpus number of you system.  e.g., ``--nproc_per_node=8``

        - ``--log_dir``: The path for each process's log. e.g., ``--log_dir=output_dir``. Default ``--log_dir=log``.

        - ``--run_mode``: The run mode of job, can be:collective/ps/ps-heter. e.g., ``--run_mode=ps``. Default ``--run_mode=collective``.

        - ``--job_id``: The job unique id, it affects the log files' name. e.g., ``--job_id=job1``. Default ``--job_id=default``.

        - ``--devices``: The selected accelerate devices on nodes, can be gpu/xpu/npu/mlu etc.. e.g., ``--devices=0,1,2,3`` will launch four training processes each bound to one device.

        - ``training_script``: The full path to the single GPU training program/script to be launched in parallel, followed by all the arguments for the training script. e.g., ``traing.py``

        - ``training_script_args``: The args of training_script. e.g., ``--lr=0.1``

    Collective Parameters:
        - ``--ips``: [DEPRECATED] Paddle cluster nodes ips, e.g., ``--ips=192.168.0.16,192.168.0.17``. Default ``--ips=127.0.0.1``.

    Parameter-Server Parameters:
        - ``--servers``: User defined servers ip:port, e.g., ``--servers="192.168.0.16:6170,192.168.0.17:6170"``

        - ``--trainers``: User defined trainers ip:port, e.g., ``--trainers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172"``

        - ``--workers``: [DEPRECATED] The same as trainers.

        - ``--trainer_num``: Number of trainers on each node, can be 0.

        - ``--worker_num``: [DEPRECATED] The same as trainer_num.

        - ``--server_num``: Number of servers on each node, can be 0.

        - ``--heter_workers``: User defined heter workers ip1:port1;ip2:port2, e.g., ``--heter_workers="192.168.0.16:6172;192.168.0.17:6172"``

        - ``--heter_worker_num``: Number of heter_workers in each stage (It recommend to set when in the emulated distributed environment using single node)
        
        - ``--heter_devices``: Type of heter_device in each stage

        - ``--gloo_port``: Gloo http Port. Default ``--gloo_port=6767``.

        - ``--with_gloo``: Using gloo or not. Default ``--with_gloo=0``.

    Elastic Parameters:
        - ``--max_restart``: The maximum restart times for an elastic job. Default ``--max_restart=3``.

        - ``--elastic_level``: The elastic level: -1: disable, 0: failed exit, peers hold, 1: internal restart. Default ``--elastic_level=-1``.

        - ``--elastic_timeout``: Seconds to wait before elastic job begin to train. Default ``--elastic_timeout=30``.


    Returns:
        ``None``

    Examples 0 (master, ip/port auto detection):

            # For training on multi node, run the following command in one of the nodes

            python -m paddle.distributed.launch --nnodes 2 train.py

            # Then the following info will be print

            # Copy the following command to other nodes to run.
            # --------------------------------------------------------------------------------
            # python -m paddle.distributed.launch --master 10.0.0.1:38714 --nnodes 2 train.py
            # --------------------------------------------------------------------------------

            # Follow the instruction above and paste the command in other nodes can launch a multi nodes training job.

            # There are two ways to launch a job with the same command for multi nodes training
            # 1) using the following command in every nodes, make sure the ip is one of the training node and the port is available on that node
            # python -m paddle.distributed.launch --master 10.0.0.1:38714 --nnodes 2 train.py
            # 2) using the following command in every nodes with a independent etcd service
            # python -m paddle.distributed.launch --master etcd://10.0.0.1:2379 --nnodes 2 train.py

            # This functionality works will for both collective and ps mode and even with other arguments.


    Examples 1 (collective, single node):
        .. code-block:: bash
            :name: code-block-example-bash1
            
            # For training on single node using 4 gpus.

            python -m paddle.distributed.launch --devices=0,1,2,3 train.py --lr=0.01
        
    Examples 2 (collective, multi node):
        .. code-block:: bash
            :name: code-block-example-bash2

            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 

            # On 192.168.0.16:

            python -m paddle.distributed.launch --devices=0,1,2,3 --master=192.168.0.16:8090 train.py --lr=0.01

            # On 192.168.0.17:
            python -m paddle.distributed.launch --devices=0,1,2,3 --master=192.168.0.16:8090 train.py --lr=0.01
        
    Examples 3 (ps, cpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash3

            # To simulate distributed environment using single node, e.g., 2 servers and 4 workers.
            
            python -m paddle.distributed.launch --server_num=2 --worker_num=4 train.py --lr=0.01
        
    Examples 4 (ps, cpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash4

            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server and 2 workers.

            # On 192.168.0.16:

            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

            # Or with master, the following command run 2 server and 2 trainer on each node.

            python -m paddle.distributed.launch --master 192.168.0.16:9090 --server_num=2 --trainer_num=2 --nnodes 2 train.py


    Examples 5 (ps, gpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash5

           # To simulate distributed environment using single node, e.g., 2 servers and 4 workers, each worker use single gpu.
            
            export CUDA_VISIBLE_DEVICES=0,1,2,3
            python -m paddle.distributed.launch --server_num=2 --worker_num=4 train.py --lr=0.01
            
    Examples 6 (ps, gpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash6

            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server and 2 workers.

            # On 192.168.0.16:

            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

    Examples 7 (ps-heter, cpu + gpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash7

            # To simulate distributed environment using single node, e.g., 2 servers and 4 workers, two workers use gpu, two workers use cpu.
            
            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --server_num=2 --worker_num=2 --heter_worker_num=2 train.py --lr=0.01
            
    Examples 8 (ps-heter, cpu + gpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash8

            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server, 1 gpu worker, 1 cpu worker.

            # On 192.168.0.16:

            export CUDA_VISIBLE_DEVICES=0
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.17:6171" --heter_workers="192.168.0.16:6172,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            export CUDA_VISIBLE_DEVICES=0
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.17:6171" --heter_workers="192.168.0.16:6172,192.168.0.17:6172" train.py --lr=0.01

    Examples 9 (elastic):
        .. code-block:: bash
            :name: code-block-example-bash9

            # With the following command, the job will begin to run immediately if 4 nodes are ready,
            # or it will run after elastic_timeout if only 2 or 3 nodes ready
            python -m paddle.distributed.launch --master etcd://10.0.0.1:2379 --nnodes 2:4 train.py
            
            # once the number of nodes changes between 2:4 during training, the strategy holds
        
    """

    # initialize the context to run
    ctx = Context()

    if ctx.is_legacy_mode():

        # legacy mode
        from paddle.distributed.fleet import launch
        launch.launch()

    else:

        from . import controllers

        # initialize the selected controller
        c = controllers.init(ctx)

        # run the pods
        c.run()

        # manager or just wait pod
        c.finalize()


if __name__ == "__main__":
    launch()