legacy_allocator.cc 13.0 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <memory>
Y
Yu Yang 已提交
16
#include <string>
L
liuwei1031 已提交
17
#include <utility>
18
#include <vector>
M
minqiyang 已提交
19

20
#ifdef PADDLE_WITH_JEMALLOC
M
minqiyang 已提交
21 22 23
#include <jemalloc/jemalloc.h>
#endif

Y
Yu Yang 已提交
24
#include "glog/logging.h"
C
chengduo 已提交
25
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
Y
Yu Yang 已提交
26 27 28
#include "paddle/fluid/memory/detail/buddy_allocator.h"
#include "paddle/fluid/memory/detail/system_allocator.h"
#include "paddle/fluid/platform/gpu_info.h"
C
chengduo 已提交
29
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
30
#include "paddle/fluid/string/printf.h"
31
#include "paddle/fluid/string/split.h"
Y
Yu Yang 已提交
32 33 34 35 36 37 38 39

DEFINE_bool(init_allocated_mem, false,
            "It is a mistake that the values of the memory allocated by "
            "BuddyAllocator are always zeroed in some op's implementation. "
            "To find this error in time, we use init_allocated_mem to indicate "
            "that initializing the allocated memory with a small value "
            "during unit testing.");
DECLARE_double(fraction_of_gpu_memory_to_use);
S
sneaxiy 已提交
40 41
DECLARE_double(initial_gpu_memory_in_mb);
DECLARE_double(reallocate_gpu_memory_in_mb);
D
dzhwinter 已提交
42
DECLARE_bool(benchmark);
Y
Yu Yang 已提交
43 44 45 46 47 48 49 50

namespace paddle {
namespace memory {
namespace legacy {
template <typename Place>
void *Alloc(const Place &place, size_t size);

template <typename Place>
L
liuwei1031 已提交
51
void Free(const Place &place, void *p, size_t size);
Y
Yu Yang 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

template <typename Place>
size_t Used(const Place &place);

struct Usage : public boost::static_visitor<size_t> {
  size_t operator()(const platform::CPUPlace &cpu) const;
  size_t operator()(const platform::CUDAPlace &gpu) const;
  size_t operator()(const platform::CUDAPinnedPlace &cuda_pinned) const;
};

size_t memory_usage(const platform::Place &p);

using BuddyAllocator = detail::BuddyAllocator;

BuddyAllocator *GetCPUBuddyAllocator() {
  // We tried thread_local for inference::RNN1 model, but that not works much
  // for multi-thread test.
  static std::once_flag init_flag;
  static detail::BuddyAllocator *a = nullptr;

  std::call_once(init_flag, []() {
    a = new detail::BuddyAllocator(
        std::unique_ptr<detail::SystemAllocator>(new detail::CPUAllocator),
S
sneaxiy 已提交
75 76
        platform::CpuMinChunkSize(), platform::CpuMaxChunkSize(),
        platform::CpuMaxChunkSize());
Y
Yu Yang 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
  });

  return a;
}

// We compared the NaiveAllocator with BuddyAllocator in CPU memory allocation,
// seems they are almost the same overhead.
struct NaiveAllocator {
  void *Alloc(size_t size) { return malloc(size); }

  void Free(void *p) {
    PADDLE_ENFORCE(p);
    free(p);
  }

  static NaiveAllocator *Instance() {
    static NaiveAllocator x;
    return &x;
  }

 private:
  std::mutex lock_;
};

template <>
void *Alloc<platform::CPUPlace>(const platform::CPUPlace &place, size_t size) {
G
gongweibao 已提交
103
  VLOG(10) << "Allocate " << size << " bytes on " << platform::Place(place);
104
#ifdef PADDLE_WITH_JEMALLOC
M
minqiyang 已提交
105 106
  void *p = malloc(size);
#else
Y
Yu Yang 已提交
107
  void *p = GetCPUBuddyAllocator()->Alloc(size);
M
minqiyang 已提交
108
#endif
Y
Yu Yang 已提交
109 110 111
  if (FLAGS_init_allocated_mem) {
    memset(p, 0xEF, size);
  }
M
minqiyang 已提交
112
  VLOG(10) << "  pointer=" << p;
Y
Yu Yang 已提交
113 114 115 116
  return p;
}

template <>
L
liuwei1031 已提交
117 118
void Free<platform::CPUPlace>(const platform::CPUPlace &place, void *p,
                              size_t size) {
G
gongweibao 已提交
119
  VLOG(10) << "Free pointer=" << p << " on " << platform::Place(place);
120
#ifdef PADDLE_WITH_JEMALLOC
M
minqiyang 已提交
121 122
  free(p);
#else
Y
Yu Yang 已提交
123
  GetCPUBuddyAllocator()->Free(p);
M
minqiyang 已提交
124
#endif
Y
Yu Yang 已提交
125 126 127 128
}

template <>
size_t Used<platform::CPUPlace>(const platform::CPUPlace &place) {
129 130
#ifdef PADDLE_WITH_JEMALLOC
  // fake the result of used memory when PADDLE_WITH_JEMALLOC is ON
M
minqiyang 已提交
131 132
  return 0U;
#else
Y
Yu Yang 已提交
133
  return GetCPUBuddyAllocator()->Used();
M
minqiyang 已提交
134
#endif
Y
Yu Yang 已提交
135 136 137
}

#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
138 139 140 141 142 143 144
class GPUBuddyAllocatorList {
 public:
  GPUBuddyAllocatorList()
      : allocators_(platform::GetCUDADeviceCount()),
        flags_(platform::GetCUDADeviceCount()) {
    allocation::GPUMemMonitor.Initialize(allocators_.size());
  }
145

S
sneaxiy 已提交
146 147 148
  BuddyAllocator *Get(size_t dev_id) {
    PADDLE_ENFORCE(dev_id < flags_.size(), "Invalid device id %s", dev_id);
    std::call_once(flags_[dev_id], [this, dev_id] {
149
      platform::SetDeviceId(dev_id);
S
sneaxiy 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
      size_t first_size = platform::GpuFirstAllocateChunkSize();
      size_t re_size = platform::GpuReAllocateChunkSize();
      allocators_[dev_id] =
          new BuddyAllocator(std::unique_ptr<detail::SystemAllocator>(
                                 new detail::GPUAllocator(dev_id)),
                             platform::GpuMinChunkSize(), first_size, re_size);
      VLOG(2) << "\n\nNOTE: each GPU device use "
              << string::HumanReadableSize(first_size) << "(initial chunk) "
              << string::HumanReadableSize(re_size) << "(reallocate chunk) "
              << "% of GPU memory.\n"
              << "You can set GFlags environment variable '"
              << "FLAGS_fraction_of_gpu_memory_to_use"
              << "' or "
                 "'FLAGS_initial_gpu_memory_in_mb/"
                 "FLAGS_reallocate_gpu_memory_in_mb' to change the fraction "
                 "of GPU usage.\n\n";
      VLOG(2) << "Currently, FLAGS_fraction_of_gpu_memory_to_use="
              << FLAGS_fraction_of_gpu_memory_to_use << ", "
              << "FLAGS_initial_gpu_memory_in_mb="
              << FLAGS_initial_gpu_memory_in_mb << ", "
              << "FLAGS_reallocate_gpu_memory_in_mb="
              << FLAGS_reallocate_gpu_memory_in_mb;
    });
    return allocators_[dev_id];
  }

 private:
  std::vector<BuddyAllocator *> allocators_;
  std::vector<std::once_flag> flags_;
};
Y
Yu Yang 已提交
180

S
sneaxiy 已提交
181 182
BuddyAllocator *GetGPUBuddyAllocator(int gpu_id) {
  static GPUBuddyAllocatorList allocators;
Y
Yu Yang 已提交
183
  platform::SetDeviceId(gpu_id);
S
sneaxiy 已提交
184
  return allocators.Get(gpu_id);
Y
Yu Yang 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
}
#endif

template <>
size_t Used<platform::CUDAPlace>(const platform::CUDAPlace &place) {
#ifdef PADDLE_WITH_CUDA
  return GetGPUBuddyAllocator(place.device)->Used();
#else
  PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
#endif
}

template <>
void *Alloc<platform::CUDAPlace>(const platform::CUDAPlace &place,
                                 size_t size) {
#ifdef PADDLE_WITH_CUDA
  auto *buddy_allocator = GetGPUBuddyAllocator(place.device);
  auto *ptr = buddy_allocator->Alloc(size);
S
sneaxiy 已提交
203
  if (ptr == nullptr && size > 0) {
Y
Yu Yang 已提交
204 205 206 207
    int cur_dev = platform::GetCurrentDeviceId();
    platform::SetDeviceId(place.device);
    size_t avail, total;
    platform::GpuMemoryUsage(&avail, &total);
D
dzhwinter 已提交
208 209 210 211 212 213 214 215 216
    LOG(FATAL) << "Cannot allocate " << string::HumanReadableSize(size)
               << " in GPU " << place.device << ", available "
               << string::HumanReadableSize(avail) << "total " << total
               << "GpuMinChunkSize "
               << string::HumanReadableSize(buddy_allocator->GetMinChunkSize())
               << "GpuMaxChunkSize "
               << string::HumanReadableSize(buddy_allocator->GetMaxChunkSize())
               << "GPU memory used: "
               << string::HumanReadableSize(Used<platform::CUDAPlace>(place));
Y
Yu Yang 已提交
217
    platform::SetDeviceId(cur_dev);
L
liuwei1031 已提交
218
  } else {
D
dzhwinter 已提交
219
    if (FLAGS_benchmark) {
D
dzhwinter 已提交
220 221
      allocation::GPUMemMonitor.Add(place.device, size);
    }
L
liuwei1031 已提交
222 223 224
    if (FLAGS_init_allocated_mem) {
      cudaMemset(ptr, 0xEF, size);
    }
Y
Yu Yang 已提交
225 226 227 228 229 230 231 232
  }
  return ptr;
#else
  PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
#endif
}

template <>
L
liuwei1031 已提交
233 234
void Free<platform::CUDAPlace>(const platform::CUDAPlace &place, void *p,
                               size_t size) {
Y
Yu Yang 已提交
235 236
#ifdef PADDLE_WITH_CUDA
  GetGPUBuddyAllocator(place.device)->Free(p);
D
dzhwinter 已提交
237
  if (FLAGS_benchmark) {
D
dzhwinter 已提交
238 239
    allocation::GPUMemMonitor.Minus(place.device, size);
  }
Y
Yu Yang 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253
#else
  PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
#endif
}

#ifdef PADDLE_WITH_CUDA
BuddyAllocator *GetCUDAPinnedBuddyAllocator() {
  static std::once_flag init_flag;
  static BuddyAllocator *ba = nullptr;

  std::call_once(init_flag, []() {
    ba = new BuddyAllocator(std::unique_ptr<detail::SystemAllocator>(
                                new detail::CUDAPinnedAllocator),
                            platform::CUDAPinnedMinChunkSize(),
S
sneaxiy 已提交
254
                            platform::CUDAPinnedMaxChunkSize(),
Y
Yu Yang 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
                            platform::CUDAPinnedMaxChunkSize());
  });

  return ba;
}
#endif

template <>
size_t Used<platform::CUDAPinnedPlace>(const platform::CUDAPinnedPlace &place) {
#ifdef PADDLE_WITH_CUDA
  return GetCUDAPinnedBuddyAllocator()->Used();
#else
  PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device.");
#endif
}

template <>
void *Alloc<platform::CUDAPinnedPlace>(const platform::CUDAPinnedPlace &place,
                                       size_t size) {
#ifdef PADDLE_WITH_CUDA
  auto *buddy_allocator = GetCUDAPinnedBuddyAllocator();
  void *ptr = buddy_allocator->Alloc(size);

  if (ptr == nullptr) {
D
Dun Liang 已提交
279
    LOG(WARNING) << "cudaHostAlloc Cannot allocate " << size
Y
Yu Yang 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292
                 << " bytes in CUDAPinnedPlace";
  }
  if (FLAGS_init_allocated_mem) {
    memset(ptr, 0xEF, size);
  }
  return ptr;
#else
  PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device.");
#endif
}

template <>
void Free<platform::CUDAPinnedPlace>(const platform::CUDAPinnedPlace &place,
L
liuwei1031 已提交
293
                                     void *p, size_t size) {
Y
Yu Yang 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
#ifdef PADDLE_WITH_CUDA
  GetCUDAPinnedBuddyAllocator()->Free(p);
#else
  PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device.");
#endif
}

struct AllocVisitor : public boost::static_visitor<void *> {
  inline explicit AllocVisitor(size_t size) : size_(size) {}

  template <typename Place>
  inline void *operator()(const Place &place) const {
    return Alloc<Place>(place, size_);
  }

 private:
  size_t size_;
};

struct FreeVisitor : public boost::static_visitor<void> {
L
liuwei1031 已提交
314 315
  inline explicit FreeVisitor(void *ptr, size_t size)
      : ptr_(ptr), size_(size) {}
Y
Yu Yang 已提交
316 317 318

  template <typename Place>
  inline void operator()(const Place &place) const {
L
liuwei1031 已提交
319
    Free<Place>(place, ptr_, size_);
Y
Yu Yang 已提交
320 321 322 323
  }

 private:
  void *ptr_;
L
liuwei1031 已提交
324
  size_t size_;
Y
Yu Yang 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
};

size_t Usage::operator()(const platform::CPUPlace &cpu) const {
  return Used(cpu);
}

size_t Usage::operator()(const platform::CUDAPlace &gpu) const {
#ifdef PADDLE_WITH_CUDA
  return Used(gpu);
#else
  PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
#endif
}

size_t Usage::operator()(const platform::CUDAPinnedPlace &cuda_pinned) const {
#ifdef PADDLE_WITH_CUDA
  return Used(cuda_pinned);
#else
  PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device.");
#endif
}
}  // namespace legacy

namespace allocation {
349 350
LegacyMemMonitor GPUMemMonitor;

Y
Yu Yang 已提交
351 352
Allocation *LegacyAllocator::AllocateImpl(size_t size, Allocator::Attr attr) {
  void *ptr = boost::apply_visitor(legacy::AllocVisitor(size), place_);
C
chengduo 已提交
353 354 355 356
  auto *tmp_alloc = new Allocation(ptr, size, place_);
  platform::MemEvenRecorder::Instance().PushMemRecord(
      static_cast<void *>(tmp_alloc), place_, size);
  return tmp_alloc;
Y
Yu Yang 已提交
357 358
}

S
sneaxiy 已提交
359
void LegacyAllocator::FreeImpl(Allocation *allocation) {
L
liuwei1031 已提交
360 361 362
  boost::apply_visitor(
      legacy::FreeVisitor(allocation->ptr(), allocation->size()),
      allocation->place());
C
chengduo 已提交
363 364
  platform::MemEvenRecorder::Instance().PopMemRecord(
      static_cast<void *>(allocation), place_);
Y
Yu Yang 已提交
365 366
  delete allocation;
}
367 368 369 370 371 372 373 374 375 376 377 378 379 380

bool MemInfo::Add(const size_t &size) {
  std::lock_guard<std::mutex> lock(mutex_);
  usage_ += size;
  bool peak_point = usage_ > peak_usage_;
  if (peak_point) peak_usage_ = usage_;
  return peak_point;
}

void MemInfo::Minus(const size_t &size) {
  std::lock_guard<std::mutex> lock(mutex_);
  usage_ -= size;
}

381
uint64_t MemInfo::GetPeakUsage() const { return peak_usage_; }
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

LegacyMemMonitor::~LegacyMemMonitor() {
  for (auto &item : gpu_mem_info_) delete item.second;
}

void LegacyMemMonitor::Initialize(const int &device_num) {
  for (auto i = 0; i < device_num; ++i) {
    gpu_mem_info_[i] = new MemInfo();
  }
}

void LegacyMemMonitor::Add(const int &device, const size_t &size) {
  if (gpu_mem_info_[device]->Add(size)) {
    VLOG(3) << "#LegacyMemMonitor# device: " << device
            << " peak memory usage : "
            << (gpu_mem_info_[device]->GetPeakUsage() >> 20) << " MiB";
  }
}

void LegacyMemMonitor::Minus(const int &device, const size_t &size) {
  gpu_mem_info_[device]->Minus(size);
}

405
uint64_t LegacyMemMonitor::GetMemUsage(const int &device) const {
406 407
  return gpu_mem_info_.find(device) == gpu_mem_info_.end()
             ? 0
L
liuwei1031 已提交
408
             : gpu_mem_info_.at(device)->GetPeakUsage();
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
}

void LegacyMemMonitor::PrintMemUsage() {
  std::vector<int> devices;
  for (const auto &item : gpu_mem_info_) {
    devices.emplace_back(item.first);
  }
  std::sort(devices.begin(), devices.end());
  for (const auto &device : devices) {
    std::cout << "Device : " << device << " Peak Memory Usage : "
              << (gpu_mem_info_[device]->GetPeakUsage() >> 20) << " MiB"
              << std::endl;
  }
}

Y
Yu Yang 已提交
424 425 426
}  // namespace allocation
}  // namespace memory
}  // namespace paddle