slice_op.cc 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/plugin/slice_op_plugin.h"

namespace paddle {
namespace inference {
namespace tensorrt {

class SliceOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
22 23
                  const framework::Scope& scope,
                  bool test_mode) override {
24 25
    // This OP is implemented by trt dynamic shpae plugin.
    // Dynamic shape plugin requires TRT version greater than 6.0.
26 27 28 29
    VLOG(4) << "convert slice op to tensorrt layer";
    framework::OpDesc op_desc(op, nullptr);
    // Declare inputs
    auto* input = engine_->GetITensor(op_desc.Input("Input")[0]);
30
    auto output_name = op_desc.Output("Out")[0];
31

32
    float out_scale = 1;
33
    if (op_desc.HasAttr("out_threshold")) {
34
      out_scale = BOOST_GET_CONST(float, op_desc.GetAttr("out_threshold"));
35 36 37
      engine_->SetTensorDynamicRange(input, out_scale);
    }

38
    std::vector<int> axes =
39
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("axes"));
40
    std::vector<int> starts =
41
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("starts"));
42
    std::vector<int> ends =
43
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("ends"));
44 45
    std::vector<int> decrease_axises =
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("decrease_axis"));
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    auto input_dims = input->getDimensions();
    if (!engine_->with_dynamic_shape()) {
      // notice that input shape is [CHW] without batch axis when input has
      // static shape
      for (size_t i = input_dims.nbDims; i > 0; i--) {
        input_dims.d[i] = input_dims.d[i - 1];
      }
      input_dims.d[0] = 1;  // fake batchsize, not useful here
      for (size_t i = 0; i < axes.size(); i++) {
        if (starts[i] < 0) {
          starts[i] = std::max(starts[i] + input_dims.d[axes[i]], 0);
        }
        if (ends[i] < 0) {
          ends[i] = std::max(ends[i] + input_dims.d[axes[i]], 0);
        }
        ends[i] = std::min(ends[i], input_dims.d[axes[i]]);
        PADDLE_ENFORCE_GT(
64 65
            ends[i],
            starts[i],
66 67 68
            platform::errors::InvalidArgument(
                "Attr(ends) should be greater than attr(starts) in "
                "slice op. But received ends = %d, starts = %d.",
69 70
                ends[i],
                starts[i]));
71 72 73
      }
    }

74 75
    nvinfer1::ILayer* layer = nullptr;
    if (engine_->with_dynamic_shape()) {
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
#if IS_TRT_VERSION_GE(6000)
      auto nchw_input_dims = input->getDimensions();
      nvinfer1::Dims trt_start_dims;
      trt_start_dims.nbDims = nchw_input_dims.nbDims;
      memset(trt_start_dims.d, 0, sizeof(int32_t) * nchw_input_dims.nbDims);
      nvinfer1::Dims trt_size_dims = trt_start_dims;
      nvinfer1::Dims trt_end_dims = trt_start_dims;
      nvinfer1::Dims trt_step_dims = trt_start_dims;
      for (int i = 0; i < trt_step_dims.nbDims; i++) trt_step_dims.d[i] = 1;

      // input : [N,C,H,W]
      bool has_neg_indices = false;
      for (size_t i = 0; i < axes.size(); i++) {
        int trt_axis = axes[i];
        trt_start_dims.d[trt_axis] = starts[i];
        trt_end_dims.d[trt_axis] = ends[i];
        if (starts[i] < 0 || ends[i] < 0) has_neg_indices = true;
      }
      auto* shape_tensor = Shape(input);
      auto* start_tensor = Add1DConstantLayer(trt_start_dims);
      if (has_neg_indices) {
        start_tensor = FixNegIndices(shape_tensor, start_tensor);
      }

      std::vector<nvinfer1::ITensor*> end_vec_tensor;
      for (int i = 0; i < trt_end_dims.nbDims; i++) {
        end_vec_tensor.push_back(GetEleTensorOfShape(shape_tensor, i));
      }

      for (size_t i = 0; i < axes.size(); i++) {
        int trt_axis = axes[i];
        if (ends[i] >= 0) {
          end_vec_tensor[trt_axis] = Add1DConstantLayer(ends[i]);
        } else {
          end_vec_tensor[trt_axis] =
              Sum(end_vec_tensor[trt_axis], Add1DConstantLayer(ends[i]));
        }
      }

// CI failed in trt 6015 but success in 7134, may be a trt bug
#if IS_TRT_VERSION_GE(7134)
      auto* size_tensor =
          Sub(Min(Concat(end_vec_tensor), shape_tensor), start_tensor);
#else
      auto* size_tensor = Sub(Concat(end_vec_tensor), start_tensor);
#endif

      layer = TRT_ENGINE_ADD_LAYER(
          engine_, Slice, *input, trt_start_dims, trt_size_dims, trt_step_dims);
      layer->setInput(1, *start_tensor);
      layer->setInput(2, *size_tensor);

      if (decrease_axises.size() > 0) {
        std::vector<int32_t> gather_indices;
        for (int i = 0; i < trt_size_dims.nbDims; i++) {
          if (decrease_axises.end() !=
              std::find(decrease_axises.begin(), decrease_axises.end(), i))
            continue;
          gather_indices.push_back(i);
        }
        if (gather_indices.empty())
          gather_indices.push_back(decrease_axises[0]);
        auto real_size_tensor = Gather(size_tensor, gather_indices);
        layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *layer->getOutput(0));
        layer->setInput(1, *real_size_tensor);
      }
#else
143 144 145 146 147 148
      bool with_fp16 =
          engine_->WithFp16() && !engine_->disable_trt_plugin_fp16();
      int decrease_axis = decrease_axises.size() == 0 ? -1 : decrease_axises[0];
      plugin::SlicePluginDynamic* plugin = new plugin::SlicePluginDynamic(
          starts, ends, axes, decrease_axis, with_fp16);
      layer = engine_->AddDynamicPlugin(&input, 1, plugin);
149
#endif
150
    } else {
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
#if IS_TRT_VERSION_GE(6000)
      auto chw_input_dims = input->getDimensions();
      nvinfer1::Dims trt_start_dims;
      trt_start_dims.nbDims = chw_input_dims.nbDims;
      memset(trt_start_dims.d, 0, sizeof(int32_t) * chw_input_dims.nbDims);
      nvinfer1::Dims trt_size_dims = chw_input_dims;
      nvinfer1::Dims trt_step_dims;
      trt_step_dims.nbDims = chw_input_dims.nbDims;
      for (int i = 0; i < trt_step_dims.nbDims; i++) trt_step_dims.d[i] = 1;

      // input : [C,H,W]
      for (size_t i = 0; i < axes.size(); i++) {
        int trt_axis = axes[i] - 1;
        trt_start_dims.d[trt_axis] = starts[i];
        trt_size_dims.d[trt_axis] = ends[i] - starts[i];
      }
      layer = TRT_ENGINE_ADD_LAYER(
          engine_, Slice, *input, trt_start_dims, trt_size_dims, trt_step_dims);
#else
170 171
      bool with_fp16 =
          engine_->WithFp16() && !engine_->disable_trt_plugin_fp16();
172
      plugin::SlicePlugin* plugin =
173
          new plugin::SlicePlugin(starts, ends, axes, with_fp16);
174
      layer = engine_->AddPlugin(&input, 1, plugin);
175
#endif
176
    }
177
    RreplenishLayerAndOutput(layer, "slice", {output_name}, test_mode);
178 179 180 181 182 183 184 185
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(slice, SliceOpConverter);