multihead_matmul_op.cc 18.4 KB
Newer Older
P
Pei Yang 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2

P
Pei Yang 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

P
Pei Yang 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
8

P
Pei Yang 已提交
9 10
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
11 12
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  See
the License for the specific language governing permissions and
P
Pei Yang 已提交
13 14 15
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/qkv_to_context_plugin.h"
P
Pei Yang 已提交
17 18 19 20 21 22 23 24

namespace paddle {
namespace inference {
namespace tensorrt {

class MultiheadMatMulOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
25 26
                  const framework::Scope& scope,
                  bool test_mode) override {
P
Pei Yang 已提交
27 28 29 30
    VLOG(3) << "convert a fluid multihead_mamul op to a corresponding tensorrt "
               "network structure";
    framework::OpDesc op_desc(op, nullptr);
    // Declare inputs
31 32 33 34 35 36 37 38 39 40 41 42
    auto* input = engine_->GetITensor(op_desc.Input("Input").front());

    // fc weights and fc bias
    auto weight_name = op_desc.Input("W").front();
    auto bias_name = op_desc.Input("Bias").front();

    auto* weight_v = scope.FindVar(weight_name);
    auto* weight_t = weight_v->GetMutable<framework::LoDTensor>();

    auto* bias_v = scope.FindVar(bias_name);
    auto* bias_t = bias_v->GetMutable<framework::LoDTensor>();

43
    float* weight_data = nullptr;
C
ceci3 已提交
44
    bool qkv2context_plugin_int8 = op_desc.HasAttr("qkv2context_plugin_int8");
45 46
    float in_scale = 0.;

47 48
    if (op_desc.HasAttr("Input_scale")) {
      in_scale = BOOST_GET_CONST(float, op_desc.GetAttr("Input_scale"));
49 50
      engine_->SetTensorDynamicRange(input, in_scale);
    }
51
    weight_data = engine_->GetWeightCPUData(weight_name, weight_t);
52

53
    float* bias_data = engine_->GetWeightCPUData(bias_name, bias_t);
54 55
    std::vector<float> weight_data_tmp;
    weight_data_tmp.reserve(weight_t->numel());
56 57
    memcpy(
        weight_data_tmp.data(), weight_data, weight_t->numel() * sizeof(float));
58

59
    // (hidden_in, 3, hidden_out)
60
    const auto& weight_dims = weight_t->dims();
61

62 63 64 65 66
    int hidden_in = weight_dims[0];   // channels_in
    int three = weight_dims[1];       // channels_out
    int hidden_out = weight_dims[2];  // channels_out
    int m = hidden_in;
    int n = three * hidden_out;
67 68 69 70 71 72 73 74
    auto tranpose_weight = [](const float* src, float* dst, int m, int n) {
      for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
          dst[j * m + i] = src[i * n + j];
        }
      }
    };
    tranpose_weight(weight_data_tmp.data(), weight_data, m, n);
75

76
    int head_number = BOOST_GET_CONST(int, op_desc.GetAttr("head_number"));
77 78

    nvinfer1::ILayer* layer = nullptr;
79
    auto output_name = op_desc.Output("Out")[0];
80 81 82
    bool flag_varseqlen = engine_->use_varseqlen() &&
                          engine_->tensorrt_transformer_posid() != "" &&
                          engine_->tensorrt_transformer_maskid() != "";
83
    if (engine_->with_dynamic_shape()) {
84
      if (flag_varseqlen) {
85 86
        if (engine_->precision() == AnalysisConfig::Precision::kFloat32) {
          PADDLE_THROW(platform::errors::Fatal(
87
              "use use_varseqlen must be int8 or half, not float32."));
88
        }
89 90 91 92 93 94
        nvinfer1::Weights weight{nvinfer1::DataType::kFLOAT,
                                 static_cast<void*>(weight_data),
                                 static_cast<int32_t>(weight_t->numel())};
        nvinfer1::Weights bias{nvinfer1::DataType::kFLOAT,
                               static_cast<void*>(bias_data),
                               static_cast<int32_t>(bias_t->numel())};
95
        if (engine_->with_interleaved()) {
96 97
          VLOG(4) << "fused multihead_matmul op: use_varseqlen and "
                     "with_interleaved";
98
          if (!op_desc.HasAttr("Input_scale")) {
99 100 101 102 103
            PADDLE_THROW(
                platform::errors::Fatal("use with_interleaved must be int8."));
          }
          nvinfer1::ILayer* fc_layer = nullptr;
          float dp_probs = 1.0 / 127.0;
104
          nvinfer1::DimsHW nv_ksize(1, 1);
105 106
          fc_layer = TRT_ENGINE_ADD_LAYER(
              engine_, Convolution, *input, n, nv_ksize, weight, bias);
107 108 109 110
          fc_layer->setName(
              ("Multihead: Convolution/FullyConnected: (Output: " +
               output_name + ")")
                  .c_str());
111
          PADDLE_ENFORCE_EQ(
112 113
              op_desc.HasAttr("fc_out_threshold"),
              true,
114
              platform::errors::InvalidArgument(
115
                  "must have out_threshold in multihead layers in int8 mode"));
116
          float out_scale =
117
              BOOST_GET_CONST(float, op_desc.GetAttr("fc_out_threshold"));
118
          engine_->SetTensorDynamicRange(fc_layer->getOutput(0), out_scale);
119 120 121 122
          if (qkv2context_plugin_int8) {
            dp_probs =
                BOOST_GET_CONST(float, op_desc.GetAttr("dp_probs")) / 127.0;
          }
123 124 125 126
          auto creator = GetPluginRegistry()->getPluginCreator(
              "CustomQKVToContextPluginDynamic", "3");
          assert(creator != nullptr);
          std::vector<nvinfer1::PluginField> fields{
127 128 129
              {"hidden_size",
               &hidden_out,
               nvinfer1::PluginFieldType::kINT32,
130
               1},
131 132 133
              {"num_heads",
               &head_number,
               nvinfer1::PluginFieldType::kINT32,
134 135
               1}};
          if (qkv2context_plugin_int8) {
136 137 138 139
            fields.push_back({"dq_probs",
                              &dp_probs,
                              nvinfer1::PluginFieldType::kFLOAT32,
                              1});
140 141 142 143 144 145 146 147
          }
          nvinfer1::PluginFieldCollection* plugin_collection =
              static_cast<nvinfer1::PluginFieldCollection*>(malloc(
                  sizeof(*plugin_collection) +
                  fields.size() *
                      sizeof(nvinfer1::PluginField)));  // remember to free
          plugin_collection->nbFields = static_cast<int>(fields.size());
          plugin_collection->fields = fields.data();
148

149 150 151
          auto plugin = creator->createPlugin("CustomQKVToContextPluginDynamic",
                                              plugin_collection);
          free(plugin_collection);
152

153 154 155 156 157 158 159 160 161 162
          std::vector<nvinfer1::ITensor*> plugin_inputs;
          plugin_inputs.emplace_back(fc_layer->getOutput(0));
          if (engine_->Has("ernie_pos_name")) {
            plugin_inputs.emplace_back(engine_->GetITensor(
                engine_->Get<std::string>("ernie_pos_name")));
          } else {
            plugin_inputs.emplace_back(engine_->GetITensor(
                engine_->network()
                    ->getInput(2)
                    ->getName()));  // cu_seqlens, eval_placeholder_2
163
          }
164 165 166 167
          auto max_seqlen_tensor =
              engine_->GetITensor(engine_->network()->getInput(3)->getName());
          engine_->SetTensorDynamicRange(max_seqlen_tensor, 1.0f);
          auto* shuffle_layer = TRT_ENGINE_ADD_LAYER(
168 169
              engine_,
              Shuffle,
170 171 172 173 174 175
              *const_cast<nvinfer1::ITensor*>(max_seqlen_tensor));
          nvinfer1::Dims shape_dim;
          shape_dim.nbDims = 1;
          shape_dim.d[0] = -1;
          shuffle_layer->setReshapeDimensions(shape_dim);
          engine_->SetTensorDynamicRange(shuffle_layer->getOutput(0), 1.0f);
176
          plugin_inputs.emplace_back(
177 178 179 180 181 182
              shuffle_layer->getOutput(0));  // max_seqlen, eval_placeholder_3
          shuffle_layer->setName(
              ("Multihead: Shuffle: (Output: " + output_name + ")").c_str());
          auto plugin_layer = engine_->network()->addPluginV2(
              plugin_inputs.data(), plugin_inputs.size(), *plugin);
          layer = plugin_layer;
183
        } else {
184 185 186 187
          int head_size = hidden_out / head_number;
          // [3, head_number, head_size, hidden_in] -> [head_number, 3,
          // head_size,
          // hidden_in]
188 189 190 191 192
          auto transpose_weight_v2 = [](const float* src,
                                        float* dst,
                                        int three,
                                        int head_number,
                                        int head_size,
193 194 195 196 197 198 199 200 201 202 203 204
                                        int hidden_in) {
            const int HH = head_size * hidden_in;
            for (int i = 0; i < three; ++i) {
              for (int n = 0; n < head_number; ++n) {
                for (int hh = 0; hh < HH; ++hh) {
                  dst[n * three * HH + i * HH + hh] =
                      src[i * head_number * HH + n * HH + hh];
                }
              }
            }
          };
          // [3, head_number, head_size] -> [head_number, 3, head_size]
205 206 207 208 209 210 211 212
          auto transpose_bias_v2 =
              [](const float* src, float* dst, int N, int H) {
                for (int i = 0; i < 3; ++i) {
                  for (int n = 0; n < N; ++n) {
                    for (int h = 0; h < H; ++h) {
                      dst[n * 3 * H + i * H + h] = src[i * N * H + n * H + h];
                    }
                  }
213
                }
214 215 216
              };
          memcpy(weight_data_tmp.data(),
                 weight_data,
217
                 weight_t->numel() * sizeof(float));
218 219 220 221 222 223
          transpose_weight_v2(weight_data_tmp.data(),
                              weight_data,
                              three,
                              head_number,
                              head_size,
                              hidden_in);
224 225 226

          std::vector<float> bias_data_tmp;
          bias_data_tmp.reserve(bias_t->numel());
227 228 229 230
          memcpy(
              bias_data_tmp.data(), bias_data, bias_t->numel() * sizeof(float));
          transpose_bias_v2(
              bias_data_tmp.data(), bias_data, head_number, head_size);
231 232 233

          nvinfer1::ILayer* fc_layer = nullptr;
          float dp_probs = 1.0 / 127.0;
234
          if (op_desc.HasAttr("Input_scale")) {
235
            nvinfer1::DimsHW nv_ksize(1, 1);
236 237
            fc_layer = TRT_ENGINE_ADD_LAYER(
                engine_, Convolution, *input, n, nv_ksize, weight, bias);
238
          } else {
239 240
            fc_layer = TRT_ENGINE_ADD_LAYER(
                engine_, FullyConnected, *input, n, weight, bias);
241 242
          }

243
          if (op_desc.HasAttr("fc_out_threshold")) {
244 245
            PADDLE_ENFORCE_EQ(op_desc.HasAttr("fc_out_threshold"),
                              true,
246 247 248 249 250 251 252 253 254 255 256 257 258 259
                              platform::errors::InvalidArgument(
                                  "must have out threshold in multihead layers "
                                  "in int8 mode"));
            float out_scale =
                BOOST_GET_CONST(float, op_desc.GetAttr("fc_out_threshold"));
            engine_->SetTensorDynamicRange(fc_layer->getOutput(0), out_scale);
            if (qkv2context_plugin_int8) {
              dp_probs =
                  BOOST_GET_CONST(float, op_desc.GetAttr("dp_probs")) / 127.0;
            }
          }
          auto creator = GetPluginRegistry()->getPluginCreator(
              "CustomQKVToContextPluginDynamic", "2");
          assert(creator != nullptr);
260 261 262 263
          int type = static_cast<int>(nvinfer1::DataType::kHALF);
          if (qkv2context_plugin_int8 &&
              (engine_->precision() == AnalysisConfig::Precision::kInt8)) {
            type = static_cast<int>(nvinfer1::DataType::kINT8);
264 265 266 267 268
          }
          bool has_mask = true;
          int var_seqlen = 1;
          std::vector<nvinfer1::PluginField> fields{
              {"type_id", &type, nvinfer1::PluginFieldType::kINT32, 1},
269 270 271
              {"hidden_size",
               &hidden_out,
               nvinfer1::PluginFieldType::kINT32,
272 273 274
               1},
              {"num_heads", &head_number, nvinfer1::PluginFieldType::kINT32, 1},
              {"has_mask", &has_mask, nvinfer1::PluginFieldType::kINT32, 1},
275 276 277
              {"var_seqlen",
               &var_seqlen,
               nvinfer1::PluginFieldType::kINT32,
278 279
               1}};
          if (qkv2context_plugin_int8) {
280 281 282 283
            fields.push_back({"dq_probs",
                              &dp_probs,
                              nvinfer1::PluginFieldType::kFLOAT32,
                              1});
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
          }
          nvinfer1::PluginFieldCollection* plugin_collection =
              static_cast<nvinfer1::PluginFieldCollection*>(malloc(
                  sizeof(*plugin_collection) +
                  fields.size() *
                      sizeof(nvinfer1::PluginField)));  // remember to free
          plugin_collection->nbFields = static_cast<int>(fields.size());
          plugin_collection->fields = fields.data();

          auto plugin = creator->createPlugin("CustomQKVToContextPluginDynamic",
                                              plugin_collection);
          free(plugin_collection);

          std::vector<nvinfer1::ITensor*> plugin_inputs;
          plugin_inputs.emplace_back(fc_layer->getOutput(0));
299 300 301 302
          plugin_inputs.emplace_back(engine_->GetITensor("qkv_plugin_mask"));
          plugin_inputs.emplace_back(engine_->GetITensor("pos_id"));

          auto max_seqlen_tensor = engine_->GetITensor("mask_id");
303
          auto* shuffle_layer = TRT_ENGINE_ADD_LAYER(
304 305
              engine_,
              Shuffle,
306 307 308 309 310 311 312 313 314 315 316 317
              *const_cast<nvinfer1::ITensor*>(max_seqlen_tensor));
          nvinfer1::Dims shape_dim;
          shape_dim.nbDims = 1;
          shape_dim.d[0] = -1;
          shuffle_layer->setReshapeDimensions(shape_dim);
          engine_->SetTensorDynamicRange(shuffle_layer->getOutput(0), 1.0f);
          plugin_inputs.emplace_back(
              shuffle_layer->getOutput(0));  // max_seqlen, eval_placeholder_3

          auto plugin_layer = engine_->network()->addPluginV2(
              plugin_inputs.data(), plugin_inputs.size(), *plugin);
          layer = plugin_layer;
318
        }
319
      } else {
320
        PADDLE_ENFORCE_EQ(
321 322
            input->getDimensions().nbDims,
            3,
323 324 325 326
            platform::errors::InvalidArgument(
                "The Input dim of the MultiheadMatMul should be 3, "
                "but it's (%d) now.",
                input->getDimensions().nbDims));
327 328 329 330 331 332 333 334 335 336 337 338 339
        // transpose weight_data from m * n to  n * m
        auto* input_bias_qk =
            engine_->GetITensor(op_desc.Input("BiasQK").front());

        TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
                                      static_cast<void*>(weight_data),
                                      static_cast<size_t>(weight_t->numel())};
        weight.dims.assign({n, m});

        TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT,
                                    static_cast<void*>(bias_data),
                                    static_cast<size_t>(bias_t->numel())};

340
        // add shuffle before fc
341 342 343 344 345 346 347 348 349 350
        std::vector<nvinfer1::ITensor*> reshape_before_fc_shape_tensor;
        nvinfer1::ITensor* input_shape_tensor = Shape(input);

        for (int i = 0; i < 5; i++) {
          reshape_before_fc_shape_tensor.push_back(Add1DConstantLayer(1));
        }
        for (int i = 0; i < 3; i++) {
          reshape_before_fc_shape_tensor[i] =
              GetEleTensorOfShape(input_shape_tensor, i);
        }
351 352
        auto* reshape_before_fc_layer =
            TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input);
353
        if (op_desc.HasAttr("Input_scale")) {
354 355 356
          engine_->SetTensorDynamicRange(reshape_before_fc_layer->getOutput(0),
                                         in_scale);
        }
357 358
        reshape_before_fc_layer->setInput(
            1, *Concat(reshape_before_fc_shape_tensor));
359 360 361 362 363
        reshape_before_fc_layer->setName(
            ("shuffle_before_multihead_mamul(Output: " + output_name + ")")
                .c_str());

        // add layer fc
364
        nvinfer1::ILayer* fc_layer = nullptr;
365
        if (op_desc.HasAttr("Input_scale")) {
366
          nvinfer1::DimsHW nv_ksize(1, 1);
367 368 369 370 371 372 373 374
          fc_layer =
              TRT_ENGINE_ADD_LAYER(engine_,
                                   Convolution,
                                   *reshape_before_fc_layer->getOutput(0),
                                   n,
                                   nv_ksize,
                                   weight.get(),
                                   bias.get());
375
        } else {
376 377 378 379 380 381 382
          fc_layer =
              TRT_ENGINE_ADD_LAYER(engine_,
                                   FullyConnected,
                                   *reshape_before_fc_layer->getOutput(0),
                                   n,
                                   weight.get(),
                                   bias.get());
383 384
        }

385
        if (op_desc.HasAttr("fc_out_threshold")) {
386
          PADDLE_ENFORCE_EQ(
387 388
              op_desc.HasAttr("fc_out_threshold"),
              true,
389 390 391 392 393 394
              platform::errors::InvalidArgument(
                  "must have out threshold in multihead layers in int8 mode"));
          float out_scale =
              BOOST_GET_CONST(float, op_desc.GetAttr("fc_out_threshold"));
          engine_->SetTensorDynamicRange(fc_layer->getOutput(0), out_scale);
        }
395 396 397 398 399 400
        fc_layer->setName(
            ("multihead_mamul_fc(Output: " + output_name + ")").c_str());

        // no need to add shuffle after fc, just change it in
        // QkvToContextPluginDynamic

401
        // add qkv to context
402
        int head_size = hidden_out / head_number;
403 404 405
        float scale = BOOST_GET_CONST(float, op_desc.GetAttr("alpha"));

        std::vector<nvinfer1::ITensor*> plugin_inputs;
406
        plugin_inputs.push_back(fc_layer->getOutput(0));
407
        plugin_inputs.push_back(input_bias_qk);
408 409
        bool with_fp16 =
            engine_->WithFp16() && !engine_->disable_trt_plugin_fp16();
410

411 412
        if (engine_->precision() == AnalysisConfig::Precision::kInt8) {
          with_fp16 = true;
413
        }
414
        plugin::DynamicPluginTensorRT* plugin =
415 416
            new plugin::QkvToContextPluginDynamic(
                hidden_in, head_number, head_size, scale, with_fp16);
417
        layer = engine_->AddDynamicPlugin(plugin_inputs.data(), 2, plugin);
418
      }
419 420 421 422 423 424 425
    } else {
      PADDLE_THROW(platform::errors::Fatal(
          "You are running the Ernie(Bert) model in static shape mode, which "
          "is not supported for the time being.\n"
          "You can use the config.SetTRTDynamicShapeInfo(...) interface to set "
          "the shape information to run the dynamic shape mode."));
    }
426 427
    RreplenishLayerAndOutput(
        layer, "multihead_matmul", {output_name}, test_mode);
P
Pei Yang 已提交
428 429 430 431 432 433 434 435
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(multihead_matmul, MultiheadMatMulOpConverter);