l1_norm_op.h 2.4 KB
Newer Older
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
18 19 20 21 22

namespace paddle {
namespace operators {

// Out = sum(abs(X))
Q
QI JUN 已提交
23
template <typename DeviceContext, typename T>
24 25 26 27 28 29 30 31
class L1NormKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    const framework::Tensor *X = context.Input<framework::Tensor>("X");
    framework::Tensor *Out = context.Output<framework::Tensor>("Out");
    Out->mutable_data<T>(context.GetPlace());

    auto x = framework::EigenVector<T>::Flatten(*X);
32
    auto out = framework::EigenScalar<T>::From(*Out);
Q
QI JUN 已提交
33 34
    auto &place =
        *context.template device_context<DeviceContext>().eigen_device();
35 36 37 38 39 40

    out.device(place) = x.abs().sum();
  }
};

// dX = dout * sign(X)
Q
QI JUN 已提交
41
template <typename DeviceContext, typename T>
42 43 44 45 46 47 48 49 50 51 52 53 54 55
class L1NormGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    const framework::Tensor *x = context.Input<framework::Tensor>("X");
    const framework::Tensor *d_out =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    PADDLE_ENFORCE(d_out->numel() == 1, "L1 Norm Gradient should be scalar");
    framework::Tensor *dx =
        context.Output<framework::Tensor>(framework::GradVarName("X"));
    dx->mutable_data<T>(context.GetPlace());

    auto x_eigen = framework::EigenVector<T>::Flatten(*x);
    auto d_out_eigen = framework::EigenVector<T>::Flatten(*d_out);
    auto dx_eigen = framework::EigenVector<T>::Flatten(*dx);
Q
QI JUN 已提交
56 57
    auto &place =
        *context.template device_context<DeviceContext>().eigen_device();
58 59 60 61 62 63 64 65

    Eigen::DSizes<int, 1> x_dsize(x->numel());
    dx_eigen.device(place) = d_out_eigen.broadcast(x_dsize) * x_eigen.sign();
  }
};

}  // namespace operators
}  // namespace paddle