assign_op.cc 4.8 KB
Newer Older
L
Luo Tao 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yu Yang 已提交
14

Y
Yi Wang 已提交
15 16 17 18
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/platform/device_context.h"
Y
Yu Yang 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

namespace paddle {
namespace operators {
class AssignFunctor {
 public:
  AssignFunctor(framework::Variable *out,
                const platform::DeviceContext &dev_ctx)
      : out_(out), dev_ctx_(dev_ctx) {}

  void operator()(const framework::LoDTensor &lod_tensor) const {
    auto &out_tensor = *out_->GetMutable<framework::LoDTensor>();
    copy_tensor(lod_tensor, &out_tensor);
  }

  void operator()(const framework::LoDTensorArray &array) const {
    auto &out_array = *out_->GetMutable<framework::LoDTensorArray>();
    out_array.resize(array.size());
    for (size_t i = 0; i < array.size(); ++i) {
      copy_tensor(array[i], &out_array[i]);
    }
  }

  void operator()(const framework::SelectedRows &rows) const {
    framework::SelectedRows &out_rows =
        *out_->GetMutable<framework::SelectedRows>();
    out_rows.set_rows(rows.rows());
    out_rows.set_height(rows.height());
    auto &t = rows.value();
D
dzhwinter 已提交
47
    auto *m = out_rows.mutable_value();
48
    framework::Copy(t, t.place(), dev_ctx_, m);
Y
Yu Yang 已提交
49 50 51 52 53 54 55 56 57 58 59
  }

  template <typename T>
  void operator()(const T &v) const {
    PADDLE_THROW("Not support type for assign op %s", typeid(T).name());
  }

 private:
  void copy_tensor(const framework::LoDTensor &lod_tensor,
                   framework::LoDTensor *out) const {
    auto &out_tensor = *out;
60
    Copy(lod_tensor, lod_tensor.place(), dev_ctx_, &out_tensor);
Y
Yu Yang 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74
    out_tensor.set_lod(lod_tensor.lod());
  }

  framework::Variable *out_;
  const platform::DeviceContext &dev_ctx_;
};

class AssignOp : public framework::OperatorBase {
 public:
  AssignOp(const std::string &type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
  void Run(const framework::Scope &scope,
D
dzhwinter 已提交
75
           const platform::Place &place) const override {
Y
Yu Yang 已提交
76 77 78 79 80 81 82 83
    auto *x = scope.FindVar(Input("X"));
    if (x == nullptr) {
      return;
    }
    auto *out = scope.FindVar(Output("Out"));
    PADDLE_ENFORCE(
        out != nullptr,
        "The Output(Out) should not be null if the Input(X) is set.");
D
dzhwinter 已提交
84

Y
Yu Yang 已提交
85 86
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(place);
D
dzhwinter 已提交
87

Y
Yu Yang 已提交
88 89 90 91 92 93
    framework::VisitVarType(*x, AssignFunctor(out, dev_ctx));
  }
};

class AssignOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
94
  AssignOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yu Yang 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X",
             "(LoDTensor, SelectedRows or LoDTensorArray) The input variable "
             "could be LoDTensor, SelectedRows or LoDTensorArray.")
        .AsDispensable();
    AddOutput("Out",
              "(LoDTensor, SelectedRows or LoDTensorArray) The type of output "
              "is the same as input X.");
    AddComment(R"DOC(Assign Operator

Out = X,  when type in [LoDTensor/SelectedRows/LoDTensorArray]
raise error if the type is not listed above.
)DOC");
  }
};

class AssignInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    if (context->HasInput("X")) {
      auto type = context->GetInputsVarType("X")[0];
116 117
      if (type == framework::proto::VarDesc_VarType_SELECTED_ROWS ||
          type == framework::proto::VarDesc_VarType_LOD_TENSOR) {
Y
Yu Yang 已提交
118 119 120 121 122 123 124 125 126 127 128
        context->SetOutputDim("Out", context->GetInputDim("X"));
      }
    }
  }
};

class AssignGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
129 130
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *op = new framework::OpDesc();
Y
Yu Yang 已提交
131 132 133
    op->SetType("assign");
    op->SetInput("X", OutputGrad("Out"));
    op->SetOutput("Out", InputGrad("X"));
Y
Yu Yang 已提交
134
    return std::unique_ptr<framework::OpDesc>(op);
Y
Yu Yang 已提交
135 136 137 138 139 140 141 142 143
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(assign, ops::AssignOp, ops::AssignGradMaker,
                  ops::AssignInferShape, ops::AssignOpProtoMaker);