test_randint_op.py 7.5 KB
Newer Older
S
silingtong123 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
import paddle
21
from paddle.fluid import core
22
from paddle.static import program_guard, Program
23 24 25
import os

paddle.enable_static()
S
silingtong123 已提交
26 27 28


def output_hist(out):
29
    hist, _ = np.histogram(out, range=(-10, 10))
S
silingtong123 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43
    hist = hist.astype("float32")
    hist /= float(out.size)
    prob = 0.1 * np.ones((10))
    return hist, prob


class TestRandintOp(OpTest):
    def setUp(self):
        self.op_type = "randint"
        self.inputs = {}
        self.init_attrs()
        self.outputs = {"Out": np.zeros((10000, 784)).astype("float32")}

    def init_attrs(self):
44
        self.attrs = {"shape": [10000, 784], "low": -10, "high": 10, "seed": 10}
S
silingtong123 已提交
45 46 47 48 49 50 51 52 53
        self.output_hist = output_hist

    def test_check_output(self):
        self.check_output_customized(self.verify_output)

    def verify_output(self, outs):
        hist, prob = self.output_hist(np.array(outs[0]))
        self.assertTrue(
            np.allclose(
54
                hist, prob, rtol=0, atol=0.001), "hist: " + str(hist))
S
silingtong123 已提交
55 56 57 58


class TestRandintOpError(unittest.TestCase):
    def test_errors(self):
59 60 61 62
        with program_guard(Program(), Program()):
            self.assertRaises(TypeError, paddle.randint, 5, shape=np.array([2]))
            self.assertRaises(TypeError, paddle.randint, 5, dtype='float32')
            self.assertRaises(ValueError, paddle.randint, 5, 5)
63
            self.assertRaises(ValueError, paddle.randint, -5)
64 65 66 67 68
            self.assertRaises(TypeError, paddle.randint, 5, shape=['2'])
            shape_tensor = paddle.static.data('X', [1])
            self.assertRaises(TypeError, paddle.randint, 5, shape=shape_tensor)
            self.assertRaises(
                TypeError, paddle.randint, 5, shape=[shape_tensor])
S
silingtong123 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83


class TestRandintOp_attr_tensorlist(OpTest):
    def setUp(self):
        self.op_type = "randint"
        self.new_shape = (10000, 784)
        shape_tensor = []
        for index, ele in enumerate(self.new_shape):
            shape_tensor.append(("x" + str(index), np.ones(
                (1)).astype("int64") * ele))
        self.inputs = {'ShapeTensorList': shape_tensor}
        self.init_attrs()
        self.outputs = {"Out": np.zeros((10000, 784)).astype("int32")}

    def init_attrs(self):
84
        self.attrs = {"low": -10, "high": 10, "seed": 10}
S
silingtong123 已提交
85 86 87 88 89 90 91 92 93
        self.output_hist = output_hist

    def test_check_output(self):
        self.check_output_customized(self.verify_output)

    def verify_output(self, outs):
        hist, prob = self.output_hist(np.array(outs[0]))
        self.assertTrue(
            np.allclose(
94
                hist, prob, rtol=0, atol=0.001), "hist: " + str(hist))
S
silingtong123 已提交
95 96 97 98 99 100 101 102 103 104


class TestRandint_attr_tensor(OpTest):
    def setUp(self):
        self.op_type = "randint"
        self.inputs = {"ShapeTensor": np.array([10000, 784]).astype("int64")}
        self.init_attrs()
        self.outputs = {"Out": np.zeros((10000, 784)).astype("int64")}

    def init_attrs(self):
105
        self.attrs = {"low": -10, "high": 10, "seed": 10}
S
silingtong123 已提交
106 107 108 109 110 111 112 113 114
        self.output_hist = output_hist

    def test_check_output(self):
        self.check_output_customized(self.verify_output)

    def verify_output(self, outs):
        hist, prob = self.output_hist(np.array(outs[0]))
        self.assertTrue(
            np.allclose(
115
                hist, prob, rtol=0, atol=0.001), "hist: " + str(hist))
S
silingtong123 已提交
116 117 118 119 120


# Test python API
class TestRandintAPI(unittest.TestCase):
    def test_api(self):
121
        with program_guard(Program(), Program()):
S
silingtong123 已提交
122
            # results are from [0, 5).
123
            out1 = paddle.randint(5)
S
silingtong123 已提交
124
            # shape is a list and dtype is 'int32'
125
            out2 = paddle.randint(
S
silingtong123 已提交
126 127
                low=-100, high=100, shape=[64, 64], dtype='int32')
            # shape is a tuple and dtype is 'int64'
128
            out3 = paddle.randint(
S
silingtong123 已提交
129 130
                low=-100, high=100, shape=(32, 32, 3), dtype='int64')
            # shape is a tensorlist and dtype is 'float32'
131 132
            dim_1 = paddle.fluid.layers.fill_constant([1], "int64", 32)
            dim_2 = paddle.fluid.layers.fill_constant([1], "int32", 50)
133 134
            out4 = paddle.randint(
                low=-100, high=100, shape=[dim_1, 5, dim_2], dtype='int32')
S
silingtong123 已提交
135
            # shape is a tensor and dtype is 'float64'
136
            var_shape = paddle.static.data(
137 138
                name='var_shape', shape=[2], dtype="int64")
            out5 = paddle.randint(
S
silingtong123 已提交
139 140
                low=1, high=1000, shape=var_shape, dtype='int64')

141 142
            place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
            ) else paddle.CPUPlace()
143
            exe = paddle.static.Executor(place)
S
silingtong123 已提交
144 145
            outs = exe.run(
                feed={'var_shape': np.array([100, 100]).astype('int64')},
146
                fetch_list=[out1, out2, out3, out4, out5])
S
silingtong123 已提交
147 148


149 150 151
class TestRandintImperative(unittest.TestCase):
    def test_api(self):
        n = 10
152 153 154 155 156 157 158 159
        paddle.disable_static()
        x1 = paddle.randint(n, shape=[10], dtype="int32")
        x2 = paddle.tensor.randint(n)
        x3 = paddle.tensor.random.randint(n)
        for i in [x1, x2, x3]:
            for j in i.numpy().tolist():
                self.assertTrue((j >= 0 and j < n))
        paddle.enable_static()
S
silingtong123 已提交
160 161


162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
class TestRandomValue(unittest.TestCase):
    def test_fixed_random_number(self):
        # Test GPU Fixed random number, which is generated by 'curandStatePhilox4_32_10_t'
        if not paddle.is_compiled_with_cuda():
            return

        # Different GPU generatte different random value. Only test V100 here.
        if not "V100" in paddle.device.cuda.get_device_name():
            return

        if os.getenv("FLAGS_use_curand", None) in ('0', 'False', None):
            return

        print("Test Fixed Random number on GPU------>")
        paddle.disable_static()
        paddle.set_device('gpu')
        paddle.seed(100)

        x = paddle.randint(
            -10000, 10000, [32, 3, 1024, 1024], dtype='int32').numpy()
        self.assertTrue(x.mean(), -0.7517569760481516)
        self.assertTrue(x.std(), 5773.696619107639)
        expect = [2535, 2109, 5916, -5011, -261]
        self.assertTrue(np.array_equal(x[10, 0, 100, 100:105], expect))
        expect = [3465, 7206, -8660, -9628, -6574]
        self.assertTrue(np.array_equal(x[20, 1, 600, 600:605], expect))
        expect = [881, 1560, 1100, 9664, 1669]
        self.assertTrue(np.array_equal(x[30, 2, 1000, 1000:1005], expect))

        x = paddle.randint(
            -10000, 10000, [32, 3, 1024, 1024], dtype='int64').numpy()
        self.assertTrue(x.mean(), -1.461287518342336)
        self.assertTrue(x.std(), 5773.023477548159)
        expect = [7213, -9597, 754, 8129, -1158]
        self.assertTrue(np.array_equal(x[10, 0, 100, 100:105], expect))
        expect = [-7159, 8054, 7675, 6980, 8506]
        self.assertTrue(np.array_equal(x[20, 1, 600, 600:605], expect))
        expect = [3581, 3420, -8027, -5237, -2436]
        self.assertTrue(np.array_equal(x[30, 2, 1000, 1000:1005], expect))
        paddle.enable_static()


S
silingtong123 已提交
204 205
if __name__ == "__main__":
    unittest.main()