softmax_with_cross_entropy_op.cc 8.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

C
caoying03 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/softmax_with_cross_entropy_op.h"
Y
Yu Yang 已提交
16

17 18 19 20 21 22
namespace paddle {
namespace operators {

class SoftmaxWithCrossEntropyOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
23
  void Make() override {
C
caoying03 已提交
24
    AddInput("Logits",
25
             "(Tensor, default: Tensor<float>), The unscaled log probabilities "
C
caoying03 已提交
26
             "which is a 2-D tensor with shape [N x K]. N is the batch_size, "
27 28
             "and K is the class number.");
    AddInput("Label",
C
caoying03 已提交
29 30 31 32
             "(Tensor) The ground truth which is a 2-D tensor. If soft_label "
             "is set to false, Label is a Tensor<int64> with shape [N x 1]. If "
             "soft_label is set to true, Label is a Tensor<float/double> with "
             "shape [N x K].");
C
caoying03 已提交
33 34
    AddOutput(
        "Softmax",
35
        "(Tensor, default: Tensor<float>), A 2-D tensor with shape [N x K]. "
C
caoying03 已提交
36 37
        "The outputs value of softmax activation by given the input batch, "
        "which will be used in backward calculation.")
C
caoying03 已提交
38
        .AsIntermediate();
C
caoying03 已提交
39
    AddOutput("Loss",
40
              "(Tensor, default: Tensor<float>), A 2-D tensor. The cross "
C
caoying03 已提交
41
              "entropy loss with shape [N x 1].");
C
caoying03 已提交
42
    AddAttr<bool>(
43
        "soft_label",
C
caoying03 已提交
44 45 46
        "(bool, default: false), A flag to indicate whether to interpretate "
        "the given labels as soft labels.")
        .SetDefault(false);
47 48 49 50 51 52
    AddAttr<int>(
        "ignore_index",
        "(int, default -100), Specifies a target value that is ignored and"
        "does not contribute to the input gradient. Only valid if soft_label"
        "is set to False")
        .SetDefault(-100);
53
    AddComment(R"DOC(
54 55 56
Softmax With Cross Entropy Operator.

Cross entropy loss with softmax is used as the output layer extensively. This
57
operator computes the softmax normalized values for each row of the input
58
tensor, after which cross-entropy loss is computed. This provides a more
59 60
numerically stable gradient.

61 62 63
Because this operator performs a softmax on logits internally, it expects
unscaled logits. This operator should not be used with the output of
softmax operator since that would produce incorrect results.
64

C
caoying03 已提交
65
When the attribute soft_label is set false, this operators expects mutually
66 67
exclusive hard labels, each sample in a batch is in exactly one class with a
probability of 1.0. Each sample in the batch will have a single label.
68

69
The equation is as follows:
70

71
1) Hard label (one-hot label, so every sample has exactly one class)
72

73
$$Loss_j =  -\text{Logit}_{Label_j} +
74
\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right),
75
j = 1,..., K$$
C
caoying03 已提交
76

77
2) Soft label (each sample can have a distribution over all classes)
C
caoying03 已提交
78

79
$$Loss_j =  -\sum_{i=0}^{K}\text{Label}_i \left(\text{Logit}_i -
80
\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right)\right),
81
j = 1,...,K$$
C
caoying03 已提交
82 83

)DOC");
84 85 86 87 88 89 90
  }
};

class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

91
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
qiaolongfei 已提交
92 93 94 95 96 97 98 99 100 101
    PADDLE_ENFORCE(ctx->HasInput("Logits"),
                   "Input(Logits) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");

    PADDLE_ENFORCE(ctx->HasOutput("Softmax"),
                   "Output(Softmax) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("Loss"), "Output(Loss) should be not null.");

    auto logits_dims = ctx->GetInputDim("Logits");
    auto labels_dims = ctx->GetInputDim("Label");
C
caoying03 已提交
102
    PADDLE_ENFORCE_EQ(
Q
qiaolongfei 已提交
103
        logits_dims.size(), 2UL,
104
        "The input of softmax_with_cross_entropy should be a 2-D tensor.");
Q
qiaolongfei 已提交
105
    PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL,
C
caoying03 已提交
106
                      "The labels should be a 2-D tensor.");
107

108
    if (ctx->Attrs().Get<bool>("soft_label")) {
Q
qiaolongfei 已提交
109
      PADDLE_ENFORCE_EQ(logits_dims[1], labels_dims[1],
110
                        "If Attr(soft_label) == true, the 2nd dimension of "
111 112
                        "Input(X) and Input(Label) should be equal.");
    } else {
Q
qiaolongfei 已提交
113
      PADDLE_ENFORCE_EQ(labels_dims[1], 1UL,
114
                        "If Attr(soft_label) == false, the 2nd dimension of "
115 116 117
                        "Input(Label) should be 1.");
    }

Q
qiaolongfei 已提交
118 119
    ctx->SetOutputDim("Softmax", logits_dims);
    ctx->SetOutputDim("Loss", {logits_dims[0], 1});
120

Q
qiaolongfei 已提交
121 122
    ctx->ShareLoD("Logits", /*->*/ "Softmax");
    ctx->ShareLoD("Logits", /*->*/ "Loss");
C
caoying03 已提交
123
  }
Y
Yu Yang 已提交
124

125
 protected:
126
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
127
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
128 129 130
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("Logits")->type()),
        ctx.device_context());
Y
Yu Yang 已提交
131
  }
C
caoying03 已提交
132 133 134 135 136 137
};

class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

138
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
qiaolongfei 已提交
139 140 141 142 143 144 145 146 147 148 149
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
                   "Input(Loss@Grad) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Softmax"),
                   "Input(Softmax) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Logits")),
                   "Output(Logits@Grad) should be not null.");

    auto softmax_dims = ctx->GetInputDim("Softmax");
    auto labels_dims = ctx->GetInputDim("Label");
    PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL,
C
caoying03 已提交
150
                      "The labels should be a 2-D tensor.");
151

152
    if (ctx->Attrs().Get<bool>("soft_label")) {
Q
qiaolongfei 已提交
153
      PADDLE_ENFORCE_EQ(softmax_dims[1], labels_dims[1],
154
                        "When Attr(soft_label) == true, the 2nd dimension of "
155 156
                        "Input(X) and Input(Label) should be equal.");
    } else {
Q
qiaolongfei 已提交
157
      PADDLE_ENFORCE_EQ(labels_dims[1], 1UL,
158
                        "When Attr(soft_label) == false, the 2nd dimension of "
159 160
                        "Input(Label) should be 1.");
    }
C
caoying03 已提交
161

Q
qiaolongfei 已提交
162 163
    ctx->SetOutputDim(framework::GradVarName("Logits"),
                      ctx->GetInputDim("Softmax"));
164
  }
Y
Yu Yang 已提交
165

166
 protected:
167
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
168
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
169 170 171 172
    return framework::OpKernelType(
        framework::ToDataType(
            ctx.Input<Tensor>(framework::GradVarName("Loss"))->type()),
        ctx.device_context());
Y
Yu Yang 已提交
173
  }
174 175
};

176 177 178 179 180
class SoftmaxGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
181 182
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* grad_op = new framework::OpDesc();
Y
Yu Yang 已提交
183 184 185 186 187 188 189 190
    grad_op->SetType("softmax_with_cross_entropy_grad");
    grad_op->SetInput("Label", Input("Label"));
    grad_op->SetInput("Softmax", Output("Softmax"));
    grad_op->SetInput("Loss", Output("Loss"));
    grad_op->SetInput(framework::GradVarName("Softmax"), OutputGrad("Softmax"));
    grad_op->SetInput(framework::GradVarName("Loss"), OutputGrad("Loss"));
    grad_op->SetOutput(framework::GradVarName("Logits"), InputGrad("Logits"));
    grad_op->SetAttrMap(Attrs());
Y
Yu Yang 已提交
191
    return std::unique_ptr<framework::OpDesc>(grad_op);
192 193 194
  }
};

195 196 197 198 199
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

200
REGISTER_OPERATOR(softmax_with_cross_entropy, ops::SoftmaxWithCrossEntropyOp,
Y
Yu Yang 已提交
201
                  ops::SoftmaxWithCrossEntropyOpMaker, ops::SoftmaxGradMaker);
202 203
REGISTER_OPERATOR(softmax_with_cross_entropy_grad,
                  ops::SoftmaxWithCrossEntropyOpGrad);
204
REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy,
C
caoying03 已提交
205 206
                       ops::SoftmaxWithCrossEntropyKernel<float>,
                       ops::SoftmaxWithCrossEntropyKernel<double>);
207
REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy_grad,
C
caoying03 已提交
208 209
                       ops::SoftmaxWithCrossEntropyGradKernel<float>,
                       ops::SoftmaxWithCrossEntropyGradKernel<double>);