split_selected_rows_op.h 3.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yancey 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <vector>
Y
Yi Wang 已提交
18
#include "paddle/fluid/framework/op_registry.h"
Q
Qiao Longfei 已提交
19
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/operators/math/selected_rows_functor.h"
Y
Yancey 已提交
21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class SplitSelectedRowsOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::SelectedRows>("X");
    auto outs = ctx.MultiOutput<framework::SelectedRows>("Out");
T
tangwei12 已提交
31
    auto height_sections = ctx.Attr<std::vector<int64_t>>("height_sections");
Y
Yancey 已提交
32

33 34
    auto abs_sections = ToAbsoluteSection(height_sections);

35 36
    auto x_rows = x->rows();
    std::vector<std::vector<int>> outs_rows_idx;
37 38
    std::vector<std::vector<int>> outs_dense_idx;

39
    outs_rows_idx.resize(outs.size());
40
    outs_dense_idx.resize(outs.size());
Y
Yancey 已提交
41

42 43 44
    auto row_numel = x->value().numel() / x->value().dims()[0];
    auto src = x->value().data<T>();

45
    // split rows index into output sparse vars
46
    for (size_t i = 0; i < x_rows.size(); ++i) {
47 48 49
      int out_idx = FindOutIdx(x_rows[i], abs_sections);
      outs_rows_idx[out_idx].push_back(x_rows[i]);
      outs_dense_idx[out_idx].push_back(i);
50 51
    }
    auto place = ctx.GetPlace();
Y
Yancey 已提交
52

53 54
    for (size_t i = 0; i < outs_rows_idx.size(); ++i) {
      auto rows_idx = outs_rows_idx[i];
55
      outs[i]->set_height(height_sections[i]);
56 57 58 59
      auto dims = x->GetCompleteDims();
      dims[0] = rows_idx.size();
      outs[i]->mutable_value()->mutable_data<T>(dims, x->place());
      outs[i]->mutable_rows()->clear();
60 61
      if (rows_idx.size() > 0) {
        for (auto idx : rows_idx) {
62
          outs[i]->mutable_rows()->push_back(idx - abs_sections[i]);
63 64 65 66
        }
        auto dst = outs[i]->mutable_value()->mutable_data<T>(ctx.GetPlace());
        for (size_t j = 0; j < rows_idx.size(); j++) {
          if (platform::is_cpu_place(place)) {
67 68 69
            memory::Copy(
                platform::CPUPlace(), dst + j * row_numel, platform::CPUPlace(),
                src + outs_dense_idx[i][j] * row_numel, sizeof(T) * row_numel);
70 71 72 73
          } else {
#ifdef PADDLE_WITH_CUDA
            auto stream = ctx.cuda_device_context().stream();
            memory::Copy(platform::CUDAPlace(), dst + j * row_numel,
74 75
                         platform::CUDAPlace(),
                         src + outs_dense_idx[i][j] * row_numel,
76 77 78 79 80 81
                         sizeof(T) * row_numel, stream);
#else
            PADDLE_THROW("Paddle is not compiled with GPU");
#endif
          }
        }
Y
Yancey 已提交
82
      }
83 84
      PADDLE_ENFORCE_EQ(rows_idx.size(), outs[i]->rows().size(),
                        "rows should has the same size with tensor dim 0");
Y
Yancey 已提交
85 86 87 88 89 90
    }
  }
};

}  // namespace operators
}  // namespace paddle