kernel_pool.h 4.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#pragma once

#include <memory>  // for shared_ptr
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/operators/jitkernels/jitcode_base.h"
#include "paddle/fluid/operators/jitkernels/kernel_base.h"
#include "paddle/fluid/operators/jitkernels/kernel_key.h"
T
tensor-tang 已提交
24
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
25 26 27 28 29

namespace paddle {
namespace operators {
namespace jitkernels {

T
tensor-tang 已提交
30 31
// TODO(TJ): rename file to kernel_pool

T
tensor-tang 已提交
32 33
template <KernelType KT>
class JitCodePool {
T
tensor-tang 已提交
34 35 36
  typedef std::unique_ptr<JitBase> JitBasePtr;
  typedef std::unordered_map<size_t, JitBasePtr> JitBaseMap;

T
tensor-tang 已提交
37
 public:
T
tensor-tang 已提交
38
  JitCodePool() = default;
T
tensor-tang 已提交
39 40 41 42 43
  static JitCodePool& Instance() {
    static thread_local JitCodePool<KT> g_jit_codes;
    return g_jit_codes;
  }

T
tensor-tang 已提交
44 45 46
  const JitBaseMap& AllKernels() { return codes_; }

  bool Has(size_t key) const { return codes_.find(key) != codes_.end(); }
T
tensor-tang 已提交
47

T
tensor-tang 已提交
48 49
  void Insert(size_t key, JitBasePtr value) {
    codes_.emplace(key, std::move(value));
T
tensor-tang 已提交
50 51 52
  }

 private:
T
tensor-tang 已提交
53
  JitBaseMap codes_;
T
tensor-tang 已提交
54 55 56
  DISABLE_COPY_AND_ASSIGN(JitCodePool);
};

T
tensor-tang 已提交
57
// TODO(TJ): std::tuple<T, Func, Attr>
T
tensor-tang 已提交
58 59 60 61 62 63
// template <typename T, typename Func, typename Attr>
// struct KernelAttr {
//   typedef T data_type;
//   typedef Func return_type;
//   typedef Attr attr_type;
// };
T
tensor-tang 已提交
64

T
tensor-tang 已提交
65 66 67 68
typedef std::unique_ptr<const Kernel> KernelPtr;
typedef std::unordered_map<KernelKey, std::vector<KernelPtr>, KernelKey::Hash>
    KernelMap;

T
tensor-tang 已提交
69 70 71
class KernelPool {
 public:
  static KernelPool& Instance();
T
tensor-tang 已提交
72
  KernelPool() = default;
T
tensor-tang 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85
  KernelMap& AllKernels() { return pool_; }
  void Insert(const KernelKey& key, KernelPtr value) {
    if (pool_.find(key) == pool_.end()) {
      pool_.emplace(key, std::vector<KernelPtr>());
    }
    pool_.at(key).emplace_back(std::move(value));
  }

 private:
  KernelMap pool_;
  DISABLE_COPY_AND_ASSIGN(KernelPool);
};

T
tensor-tang 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
// Every kernel should have refer code and it should be used in unit tests,
// so refer kernels should have it's independent kernel pool
class ReferKernelPool {
 public:
  static ReferKernelPool& Instance();
  ReferKernelPool() = default;
  KernelMap& AllKernels() { return pool_; }
  void Insert(const KernelKey& key, KernelPtr value) {
    if (pool_.find(key) == pool_.end()) {
      pool_.emplace(key, std::vector<KernelPtr>());
    }
    pool_.at(key).emplace_back(std::move(value));
  }

 private:
  KernelMap pool_;
  DISABLE_COPY_AND_ASSIGN(ReferKernelPool);
};

// Refer code do not related with attr, and always on CPUPlace
template <KernelType KT, typename T, typename Func, typename Attr>
inline Func GetRefer() {
  auto& ref_pool = ReferKernelPool().Instance().AllKernels();
  KernelKey kkey(KT, platform::CPUPlace());
  auto ref_iter = ref_pool.find(kkey);
  PADDLE_ENFORCE(ref_iter != ref_pool.end(),
                 "Every Kernel should have reference function.");
  auto& ref_impls = ref_iter->second;
  for (auto& impl : ref_impls) {
    auto i = dynamic_cast<const ReferKernel<T, Func, Attr>*>(impl.get());
    if (i) {
      return i->GetFunc();
    }
  }
  return nullptr;
}
T
tensor-tang 已提交
122 123 124 125

// TODO(TJ): make tuple? named KernelAttr
template <KernelType KT, typename T, typename Func, typename Attr,
          typename PlaceType = platform::CPUPlace>
T
tensor-tang 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
const Func Get(Attr attr) {
  size_t key = GetKey<Attr>(attr);
  auto& codes = JitCodePool<KT>().Instance();
  if (codes.Has(key)) {
    return codes.AllKernels().at(key)->template getCode<Func>();
  }

  if (std::is_same<PlaceType, platform::CPUPlace>::value) {  // TODO(TJ): float
                                                             // move to create
    auto p = CreateJitCode<KT, T, Attr>(attr);
    if (p) {
      auto f = p->template getCode<Func>();
      codes.Insert(key, std::move(p));
      return f;
    }
T
tensor-tang 已提交
141 142
  }

T
tensor-tang 已提交
143
  // pool: (KernelKey(type, place), vector<Kernel>)
T
tensor-tang 已提交
144 145 146 147
  auto& pool = KernelPool().Instance().AllKernels();
  KernelKey kkey(KT, PlaceType());
  auto iter = pool.find(kkey);
  if (iter != pool.end()) {
T
tensor-tang 已提交
148 149 150
    auto& impls = iter->second;
    for (auto& impl : impls) {
      auto i = dynamic_cast<const KernelImpl<T, Func, Attr>*>(impl.get());
T
tensor-tang 已提交
151 152 153 154 155 156
      if (i && i->UseMe(attr)) {
        return i->GetFunc();
      }
    }
  }

T
tensor-tang 已提交
157 158
  // The last implementation should be reference function on CPUPlace.
  return GetRefer<KT, T, Func, Attr>();
T
tensor-tang 已提交
159 160 161 162 163
}

}  // namespace jitkernels
}  // namespace operators
}  // namespace paddle