elementwise_div_op.h 4.2 KB
Newer Older
G
gongweibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/elementwise_op.h"

namespace paddle {
namespace operators {

template <typename Place, typename T>
class ElementwiseDivKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    ElementwiseCompute<EigenDivFunctor, Place, T>(ctx);
  }
};

template <typename T>
struct ElementwiseDivGradFunctor {
  template <typename Device, typename X, typename Y, typename Z, typename dX,
            typename dY, typename dZ>
  void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
    auto y_e = framework::EigenVector<T>::Flatten(*y);
    auto z_e = framework::EigenVector<T>::Flatten(*z);
    auto dz_e = framework::EigenVector<T>::Flatten(*dz);

    if (dx) {
      auto dx_e = framework::EigenVector<T>::Flatten(*dx);
      dx_e.device(d) = dz_e / y_e;
    }

    if (dy) {
      auto dy_e = framework::EigenVector<T>::Flatten(*dy);
      dy_e.device(d) = -1.0 * dz_e * z_e / y_e;
    }
  }
};

template <typename T>
struct ElementwiseDivBroadCastGradFunctor {
  template <typename Device, typename X, typename Y, typename Z, typename dX,
            typename dY, typename dZ, typename Pre, typename N>
  void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto y_e = framework::EigenVector<T>::Flatten(*y);
    auto dz_e = framework::EigenVector<T>::Flatten(*dz);

    auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
                         .broadcast(Eigen::DSizes<int, 2>(pre, 1))
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));

    if (dx) {
      auto dx_e = framework::EigenVector<T>::Flatten(*dx);
      dx_e.device(d) = dz_e / y_e_bcast;
    }

    if (dy) {
      auto dy_e = framework::EigenVector<T>::Flatten(*dy);
      dy_e.device(d) = (-1.0 * (x_e * dz_e) / (y_e_bcast * y_e_bcast))
                           .reshape(Eigen::DSizes<int, 2>(pre, n))
                           .sum(Eigen::array<int, 1>{{0}});
    }
  }
};

template <typename T>
struct ElementwiseDivBroadCast2GradFunctor {
  template <typename Device, typename X, typename Y, typename Z, typename dX,
            typename dY, typename dZ, typename Pre, typename N, typename Post>
  void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
                  Post post) {
    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto y_e = framework::EigenVector<T>::Flatten(*y);
    auto dz_e = framework::EigenVector<T>::Flatten(*dz);

    auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
                         .broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));
    if (dx) {
      auto dx_e = framework::EigenVector<T>::Flatten(*dx);
      dx_e.device(d) = dz_e / y_e_bcast;
    }

    if (dy) {
      auto dy_e = framework::EigenVector<T>::Flatten(*dy);
      dy_e.device(d) = (-1.0 * (x_e * dz_e) / (y_e_bcast * y_e_bcast))
                           .reshape(Eigen::DSizes<int, 3>(pre, n, post))
                           .sum(Eigen::array<int, 2>{{0, 2}});
    }
  }
};

template <typename Place, typename T>
class ElementwiseDivGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    ElementwiseGradCompute<Place, T, ElementwiseDivGradFunctor<T>,
                           ElementwiseDivGradFunctor<T>,
                           ElementwiseDivBroadCastGradFunctor<T>,
                           ElementwiseDivBroadCast2GradFunctor<T>>(ctx);
  }
};

}  // namespace operators
}  // namespace paddle