README.md 3.3 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Overview

Imperative Programming

# Related Works

## Pytorch
https://pytorch.org/

## TensorFlow Eager
https://www.tensorflow.org/guide/eager

# Design

## API
```python
class Layer(object):

  def __call__(inputs):
    # build some parameter once.
    # ...
    return self.apply(inputs):

X
polish  
Xin Pan 已提交
24
  def forward(inputs):
X
Xin Pan 已提交
25 26 27 28 29 30 31 32 33 34 35 36
    # forward logic with paddle operators. backward auto-generated.


class PyLayer(core.PyLayer):

  def __call__(cls, inputs):
    # trace the logic.

  @staticmethod
  def forward(inputs):
    # any forward logic implemented with numpy io.

X
polish  
Xin Pan 已提交
37 38
  @staticmethod
  def backward(inputs):
X
Xin Pan 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    # any backward logic implemented with numpy io.
```


## Tracer

Python Variable -> C++ VarBase -> C++ Variable -> C++ Tensor


```cpp
class Tracer {
 public:
  explicit Tracer(framework::BlockDesc* root_block) : root_block_(root_block) {}

  virtual ~Tracer() {}

  void Trace(OpBase* op,
             const std::map<std::string, std::vector<VarBase*>>& inputs,
             const std::map<std::string, std::vector<VarBase*>>& outputs,
             framework::BlockDesc* block, const bool stop_gradient = false);

  std::vector<VarBase*> PyTrace(OpBase* op, const std::vector<VarBase*>& inputs,
                                bool stop_gradient = false);
};
```

## Autodiff

Lots of research already.
https://autodiff-workshop.github.io/

## Tests

* All op tests run once in static graph, once in imperative mode.

## Refactor

* All function layers with parameters converted to class Layers.
* Models converted to imperative mode.


# Examples

```python
class MyLayer(fluid.imperative.Layer):
    def __init__(self):
        super(MyLayer, self).__init__()

    def forward(self, inputs):
        x = fluid.layers.relu(inputs)
        x = fluid.layers.elementwise_mul(x, x)
        x = fluid.layers.reduce_sum(x)
        return [x]


class MyPyLayer(fluid.imperative.PyLayer):
    def __init__(self):
        super(MyPyLayer, self).__init__()

    @staticmethod
    def forward(inputs):
        return np.tanh(inputs[0])

    @staticmethod
    def backward(inputs):
        return np.array(dout) * (1 - np.square(np.array(out)))


class MLP(fluid.imperative.Layer):
    def __init__(self):
        super(MLP, self).__init__()
        self._fc1 = FC(3,
                       fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)))
        self._fc2 = FC(4,
                       fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)))

    def forward(self, inputs):
        x = self._fc1(inputs)
        x = self._fc2(x)
        x = fluid.layers.reduce_sum(x)
        return x


 np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
 with fluid.imperative.guard():
     var_inp = fluid.imperative.base.to_variable(np_inp)
     mlp = MLP()
     out = mlp(var_inp)
     dy_out = out._numpy()
     out._backward()
```

X
polish  
Xin Pan 已提交
133

X
Xin Pan 已提交
134 135 136 137 138 139 140 141 142 143 144 145
# Plan

2.1,3 fulltime, Can run a few simple models. (Currently, 2 20% engs)

4.1, 4 fulltime, Can run 6 models, Performance 70% Pytorch. Release alpha.

6.1, 5 fulltime, Performance close to Pytorch, can run multi-devices. Release Beta.

8.1, 5 fulltime, Works in general. Covert current models to use imperative mode.

12.1, 5 fulltime, Can compile to static graph, support more optimizations.

X
polish  
Xin Pan 已提交
146

X
Xin Pan 已提交
147 148 149
# Discussion

TODO.