uci_housing.py 3.7 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import six
import numpy as np

from paddle.io import Dataset
21
from paddle.dataset.common import _check_exists_and_download
K
Kaipeng Deng 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

__all__ = ["UCIHousing"]

URL = 'http://paddlemodels.bj.bcebos.com/uci_housing/housing.data'
MD5 = 'd4accdce7a25600298819f8e28e8d593'
feature_names = [
    'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX',
    'PTRATIO', 'B', 'LSTAT'
]


class UCIHousing(Dataset):
    """
    Implementation of `UCI housing <https://archive.ics.uci.edu/ml/datasets/Housing>`_
    dataset

    Args:
        data_file(str): path to data file, can be set None if
            :attr:`download` is True. Default None
        mode(str): 'train' or 'test' mode. Default 'train'.
        download(bool): whether to download dataset automatically if
            :attr:`data_file` is not set. Default True

    Returns:
        Dataset: instance of UCI housing dataset.

    Examples:
        
        .. code-block:: python

52 53
            import paddle
            from paddle.text.datasets import UCIHousing
K
Kaipeng Deng 已提交
54

55 56 57
            class SimpleNet(paddle.nn.Layer):
                def __init__(self):
                    super(SimpleNet, self).__init__()
K
Kaipeng Deng 已提交
58

59 60
                def forward(self, feature, target):
                    return paddle.sum(feature), target
K
Kaipeng Deng 已提交
61

62
            paddle.disable_static()
K
Kaipeng Deng 已提交
63

64
            uci_housing = UCIHousing(mode='train')
K
Kaipeng Deng 已提交
65

66 67 68 69
            for i in range(10):
                feature, target = uci_housing[i]
                feature = paddle.to_tensor(feature)
                target = paddle.to_tensor(target)
K
Kaipeng Deng 已提交
70

71 72 73
                model = SimpleNet()
                feature, target = model(feature, target)
                print(feature.numpy().shape, target.numpy())
K
Kaipeng Deng 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

    """

    def __init__(self, data_file=None, mode='train', download=True):
        assert mode.lower() in ['train', 'test'], \
                "mode should be 'train' or 'test', but got {}".format(mode)
        self.mode = mode.lower()

        self.data_file = data_file
        if self.data_file is None:
            assert download, "data_file is not set and downloading automatically is disabled"
            self.data_file = _check_exists_and_download(data_file, URL, MD5,
                                                        'uci_housing', download)

        # read dataset into memory
        self._load_data()

    def _load_data(self, feature_num=14, ratio=0.8):
        data = np.fromfile(self.data_file, sep=' ')
        data = data.reshape(data.shape[0] // feature_num, feature_num)
        maximums, minimums, avgs = data.max(axis=0), data.min(axis=0), data.sum(
            axis=0) / data.shape[0]
        for i in six.moves.range(feature_num - 1):
            data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i])
        offset = int(data.shape[0] * ratio)
        if self.mode == 'train':
            self.data = data[:offset]
        elif self.mode == 'test':
            self.data = data[offset:]

    def __getitem__(self, idx):
        data = self.data[idx]
        return np.array(data[:-1]), np.array(data[-1:])

    def __len__(self):
        return len(self.data)