sequence_concat_op.cc 3.6 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
Y
Yancey1989 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/sequence_concat_op.h"
C
chengduoZH 已提交
16
#include <vector>
Y
Yancey1989 已提交
17 18 19 20

namespace paddle {
namespace operators {

C
chengduoZH 已提交
21
class SeqConcatOpMaker : public framework::OpProtoAndCheckerMaker {
Y
Yancey1989 已提交
22
 public:
C
chengduoZH 已提交
23 24 25 26 27 28 29 30 31 32 33
  void Make() override {
    AddInput("X", "The inputs of sequence concat op").AsDuplicable();
    AddOutput("Out", "The output of sequence concat op");
    AddComment(
        "Sequence Concat Op\n"
        "It will concat LoD tensors by its sequence information.\n"
        "For example:\n"
        "  LoD of X1 = [0, 3, 7]\n"
        "  LoD of X2 = [0, 7, 9]\n"
        "  Result LoD is [0, (3+7), (7+9)]\n"
        "            i.e.[0, 10, 16]\n");
Y
Yancey1989 已提交
34 35 36
  }
};

C
chengduoZH 已提交
37
class SeqConcatShapeInferer : public framework::InferShapeBase {
Y
Yancey1989 已提交
38
 public:
C
chengduoZH 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
  void operator()(framework::InferShapeContext *context) const override {
    try {
      PADDLE_ENFORCE(context->HasInputs("X"));
      PADDLE_ENFORCE(context->HasOutput("Out"));

      auto x_dims = context->GetInputsDim("X");
      int64_t batch_size = 0;
      int64_t feature_size = 0;
      std::vector<int64_t> out_dims;
      for (auto &x_dim : x_dims) {
        if (out_dims.empty()) {
          out_dims = framework::vectorize(x_dim);
        }
        batch_size += x_dim[0];
        if (feature_size == 0) {
          feature_size = framework::product(x_dim) / x_dim[0];
        } else {
          PADDLE_ENFORCE_EQ(
              feature_size, framework::product(x_dim) / x_dim[0],
              "Inputs of sequence concat must have same feature size");
        }
      }
      if (batch_size < 0) {
        batch_size = -1;  // Normalize batch size for compile time.
      }
      out_dims[0] = batch_size;
      context->SetOutputDim("Out", framework::make_ddim(out_dims));
      if (!context->IsRuntime()) {  // Runtime LoD infershape will be computed
                                    // in Kernel.
        context->ShareLoD("X", "Out");
      }
    } catch (...) {
      PADDLE_THROW("Unknown error");
    }
Y
Yancey1989 已提交
73 74 75
  }
};

C
chengduoZH 已提交
76
class SeqConcatGradShapeInferer : public framework::InferShapeBase {
Y
Yancey1989 已提交
77
 public:
C
chengduoZH 已提交
78 79 80
  void operator()(framework::InferShapeContext *context) const override {
    context->SetOutputsDim(framework::GradVarName("X"),
                           context->GetInputsDim("X"));
Y
Yancey1989 已提交
81 82 83 84 85
  }
};
}  // namespace operators
}  // namespace paddle

C
chengduoZH 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
namespace op = paddle::operators;

REGISTER_OPERATOR(sequence_concat, paddle::framework::OperatorWithKernel,
                  op::SeqConcatOpMaker, op::SeqConcatShapeInferer,
                  paddle::framework::DefaultGradOpDescMaker<false>);
template <typename T>
using Kernel = op::SeqConcatKernel<paddle::platform::CPUDeviceContext, T>;
REGISTER_OP_CPU_KERNEL(sequence_concat, Kernel<float>, Kernel<double>);
REGISTER_OPERATOR(sequence_concat_grad, paddle::framework::OperatorWithKernel,
                  op::SeqConcatGradShapeInferer);
template <typename T>
using GradKernel =
    op::SeqConcatGradKernel<paddle::platform::CPUDeviceContext, T>;
REGISTER_OP_CPU_KERNEL(sequence_concat_grad, GradKernel<float>,
                       GradKernel<double>);