transfer_layout_op.h 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/platform/device_context.h"

24 25 26 27
namespace pten {
class DenseTensor;
}  // namespace pten

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
namespace paddle {
namespace framework {
class Variable;
}  // namespace framework
}  // namespace paddle

namespace paddle {
namespace operators {
using DataLayout = framework::DataLayout;

class TransferLayoutFunctor {
 public:
  TransferLayoutFunctor(const framework::Variable *in, framework::Variable *out,
                        const platform::DeviceContext &dev_ctx,
                        const int dst_layout)
      : in_(in), out_(out), dev_ctx_(dev_ctx), dst_layout_(dst_layout) {}

  void operator()() const {
    auto &in_tensor = *framework::GetLoDTensorOrSelectedRowsValueFromVar(*in_);
    framework::LoDTensor out_tensor;

    auto out_layout = static_cast<DataLayout>(dst_layout_);
    out_tensor.set_layout(out_layout);

#ifdef PADDLE_WITH_MKLDNN
    auto in_layout = in_tensor.layout();
    if (in_layout == DataLayout::kMKLDNN || out_layout == DataLayout::kMKLDNN) {
      PADDLE_ENFORCE_NE(
          in_layout, out_layout,
          platform::errors::PreconditionNotMet(
              "No layout transform needed between two MKLDNN OPKernels."));

      if (in_layout != DataLayout::kMKLDNN &&
          out_layout == DataLayout::kMKLDNN) {
        // Case1 - transform from Non-MKLDNN OPKernel to MKLDNN OPKernel
        // Just set layout/format. No real transform occur

        auto out_format = platform::MKLDNNFormatForSize(
66
            in_tensor.dims().size(), framework::ToMKLDNNFormat(in_layout));
67 68 69
        out_tensor.ShareDataWith(in_tensor);
        // For NHWC data we need reshape of tensors as MKL-DNN
        // is expecting NHWC dims description order
J
Jacek Czaja 已提交
70 71 72 73 74
        if (in_layout == DataLayout::kNHWC) {
          platform::MatchShapeToLayout(&out_tensor, in_layout, out_layout);
          paddle::platform::MKLDNNDeviceContext::tls()
              .set_cur_paddle_data_layout(in_layout);
        }
75 76 77 78 79
        out_tensor.set_layout(DataLayout::kMKLDNN);
        out_tensor.set_format(out_format);
      } else {
        // Case2 - transfrom from MKLDNN OPKernel to Non-MKLDNN OPKernel
        // Do transform via MKLDNN lib
80
        paddle::framework::innerTransDataLayoutFromMKLDNN(
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
            in_layout, paddle::platform::MKLDNNDeviceContext::tls()
                           .get_cur_paddle_data_layout(),
            in_tensor, &out_tensor, dev_ctx_.GetPlace());
      }
    } else {
      // Case3 - transfrom between Non-MKLDNN OPKernels
      TransDataLayout(dev_ctx_, in_tensor, &out_tensor);
    }
#else
    // Case3 - transfrom between Non-MKLDNN OPKernels
    TransDataLayout(dev_ctx_, in_tensor, &out_tensor);
#endif
    framework::SetTensorToVariable(*in_, out_tensor, out_);
  }

 private:
  void TransDataLayout(const platform::DeviceContext &dev_ctx,
                       const framework::Tensor &in,
                       framework::Tensor *out) const {
    PADDLE_ENFORCE_EQ(
        framework::arity(in.dims()), 4,
        platform::errors::InvalidArgument(
            "Input dimension arity only can be 4, the input dimension is %s.",
            in.dims()));

    auto src_dim = in.dims();
    std::vector<int64_t> dst_dim;

    auto axis = framework::GetAxis(in.layout(), out->layout());
    dst_dim.resize(axis.size());
    for (size_t i = 0; i < axis.size(); i++) {
      dst_dim[i] = src_dim[axis[i]];
    }

    out->Resize(framework::make_ddim(dst_dim));
    out->mutable_data(in.place(), in.type());

    framework::VisitDataType(
        in.type(), framework::CastDataLayout(&dev_ctx, axis, in, out));
  }

  const framework::Variable *in_;
  framework::Variable *out_;
  const platform::DeviceContext &dev_ctx_;
  const int dst_layout_;
};

}  // namespace operators
}  // namespace paddle