io.py 11.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from .. import core
Y
Yu Yang 已提交
16 17
from ..framework import convert_np_dtype_to_dtype_, default_main_program, default_startup_program
from ..unique_name import generate as unique_name
T
WIP  
typhoonzero 已提交
18 19
from control_flow import BlockGuard
from ..layer_helper import LayerHelper
Y
Refine  
Yu Yang 已提交
20
from ..executor import global_scope
Y
Yu Yang 已提交
21

Y
Yu Yang 已提交
22 23
__all__ = [
    'data', 'BlockGuardServ', 'ListenAndServ', 'Send', 'open_recordio_file',
F
fengjiayi 已提交
24 25
    'open_files', 'read_file', 'create_shuffle_reader',
    'create_double_buffer_reader'
Y
Yu Yang 已提交
26
]
Y
Yu Yang 已提交
27 28 29 30 31 32 33 34 35 36


def data(name,
         shape,
         append_batch_size=True,
         dtype='float32',
         lod_level=0,
         type=core.VarDesc.VarType.LOD_TENSOR,
         stop_gradient=True):
    """
K
kavyasrinet 已提交
37
    **Data Layer**
Y
Yu Yang 已提交
38

K
kavyasrinet 已提交
39
    This function takes in the input and based on whether data has
C
caoying03 已提交
40
    to be returned back as a minibatch, it creates the global variable by using
Y
Yu Yang 已提交
41
    the helper functions. The global variables can be accessed by all the
C
caoying03 已提交
42
    following operators in the graph.
Y
Yu Yang 已提交
43 44 45 46

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

K
kavyasrinet 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    Args:
       name(str): The name/alias of the function
       shape(list): Tuple declaring the shape.
       append_batch_size(bool): Whether or not to append the data as a batch.
       dtype(int|float): The type of data : float32, float_16, int etc
       type(VarType): The output type. By default it is LOD_TENSOR.
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
       main_program(Program): Name of the main program that calls this
       startup_program(Program): Name of the startup program
       stop_gradient(bool): A boolean that mentions whether gradient should flow.

    Returns:
        Variable: The global variable that gives access to the data.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
    for i in xrange(len(shape)):
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

    return helper.create_global_variable(
        name=name,
        shape=shape,
        dtype=dtype,
        type=type,
        stop_gradient=stop_gradient,
        lod_level=lod_level)
T
typhoonzero 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
        super(BlockGuardServ, self).__init__(server.helper.main_program)
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
        return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)


class ListenAndServ(object):
    """
    ListenAndServ class.

    ListenAndServ class is used to wrap listen_and_serv op to create a server
    which can receive variables from clients and run a block.
    """

T
WIP  
typhoonzero 已提交
116
    def __init__(self, endpoint, fan_in=1, optimizer_mode=True):
117
        self.helper = LayerHelper("listen_and_serv")
T
typhoonzero 已提交
118 119 120 121
        self.inputs = []
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
122 123
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
124
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
138 139 140 141 142 143 144 145
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
146 147
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
148 149 150

        return params, grads

T
typhoonzero 已提交
151 152 153 154 155 156 157
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
158 159 160 161 162 163
    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        params, grads = self.get_params_and_grads()
T
typhoonzero 已提交
164 165
        param_names = [p.name for p in params]
        grad_names = [g.name for g in grads]
T
typhoonzero 已提交
166
        parent_block.append_op(
167
            type='listen_and_serv',
T
typhoonzero 已提交
168 169 170 171 172
            inputs={},
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
T
typhoonzero 已提交
173 174
                'ParamList': param_names,
                'GradList': grad_names,
T
typhoonzero 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
                'OptimizeBlock': current_block
            })


def Send(endpoints, send_vars, get_vars):
    """
    Send layer

    Args:
        endpoints: comma seperated IP:PORT pairs in the order
                   of send_vars to send
        send_vars: vars to send
        get_vars: vars to get from server after send completes.

    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
    """
    assert (type(send_vars) == list)
    assert (type(get_vars) == list)

    epmap = endpoints.split(",")
T
typhoonzero 已提交
196
    endpoints = list(set(epmap))
T
typhoonzero 已提交
197 198 199 200 201 202 203 204

    helper = LayerHelper("Send", **locals())
    helper.append_op(
        type="send",
        inputs={"X": send_vars},
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints,
               "epmap": epmap})
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232


def Recv(endpoints, get_vars):
    """
    Recv layer

    Args:
        endpoints: comma seperated IP:PORT pairs in the order
                   of send_vars to send
        send_vars: vars to send
        get_vars: vars to get from server after send completes.

    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
    """
    assert (type(send_vars) == list)
    assert (type(get_vars) == list)

    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
    helper.append_op(
        type="recv",
        inputs={"X": get_vars},
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints,
               "epmap": epmap})
Y
Yu Yang 已提交
233 234


Y
Refine  
Yu Yang 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248
def monkey_patch_reader_methods(reader):
    def __get_reader__():
        scope = global_scope()
        var = scope.find_var(reader.name)
        return var.get_reader()

    def eof():
        return not __get_reader__().has_next()

    def reset():
        return __get_reader__().reset()

    reader.eof = eof
    reader.reset = reset
Y
Yu Yang 已提交
249 250
    reader.stop_gradient = True
    reader.persistable = True
Y
Refine  
Yu Yang 已提交
251 252 253
    return reader


Y
Yu Yang 已提交
254 255 256 257 258
def _copy_reader_var_(block, var):
    new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
    new_var.persistable = True
Y
Refine  
Yu Yang 已提交
259
    return monkey_patch_reader_methods(new_var)
Y
Yu Yang 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290


def open_recordio_file(filename, shapes, lod_levels, dtypes):
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('open_recordio_file')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_recordio_file_reader',
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'filename': filename,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
    return _copy_reader_var_(default_main_program().current_block(),
                             startup_var)


F
fengjiayi 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
def open_files(filenames, thread_num, shapes, lod_levels, dtypes):
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('multiple_reader')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='open_files',
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks,
F
fengjiayi 已提交
311
            'file_names': filenames,
F
fengjiayi 已提交
312 313 314 315 316 317 318 319 320
            'thread_num': thread_num
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
    return _copy_reader_var_(default_main_program().current_block(),
                             startup_var)


Y
Yu Yang 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
def __create_decorated_reader__(op_type, reader, attrs):
    var_name = unique_name(op_type)
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [startup_var]},
        attrs=attrs)
    startup_var.persistable = True
    return _copy_reader_var_(default_main_program().current_block(),
                             startup_var)


def create_shuffle_reader(reader, buffer_size):
    return __create_decorated_reader__('create_shuffle_reader', reader,
                                       {'buffer_size': int(buffer_size)})


Y
Yu Yang 已提交
340 341 342 343 344 345 346 347
def create_double_buffer_reader(reader, place=None):
    attrs = dict()
    if place is not None:
        attrs['place'] = str(place).upper()
    return __create_decorated_reader__('create_double_buffer_reader', reader,
                                       attrs)


Y
Yu Yang 已提交
348 349 350 351 352
def read_file(file_obj):
    helper = LayerHelper('read_file')
    out = [
        helper.create_tmp_variable(
            stop_gradient=True, dtype='float32')
Y
Yu Yang 已提交
353
        for _ in range(len(file_obj.desc.shapes()))
Y
Yu Yang 已提交
354 355 356 357 358 359 360
    ]
    helper.append_op(
        type='read', inputs={'Reader': [file_obj]}, outputs={'Out': out})
    if len(out) == 1:
        return out[0]
    else:
        return out