roi_align_kernel.cc 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/roi_align_kernel.h"

#include "paddle/fluid/memory/memcpy.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T, typename Context>
void RoiAlignKernel(const Context& dev_ctx,
                    const DenseTensor& x,
                    const DenseTensor& boxes,
                    const paddle::optional<DenseTensor>& boxes_num,
                    int pooled_height,
                    int pooled_width,
                    float spatial_scale,
                    int sampling_ratio,
                    bool aligned,
                    DenseTensor* out) {
  const auto& in_dims = x.dims();
  int batch_size = in_dims[0];
  int channels = in_dims[1];
  int height = in_dims[2];
  int width = in_dims[3];

  int rois_num = boxes.dims()[0];

  if (rois_num == 0) return;

  DenseTensor roi_batch_id_list;
  roi_batch_id_list.Resize({rois_num});
  auto cplace = phi::CPUPlace();
  int* roi_batch_id_data = dev_ctx.template HostAlloc<int>(&roi_batch_id_list);
  auto xplace = dev_ctx.GetPlace();
  int rois_batch_size = 0;
  int* cpu_lod = nullptr;
  if (boxes_num) {
    rois_batch_size = boxes_num->numel();
    PADDLE_ENFORCE_EQ(
        rois_batch_size,
        batch_size,
        errors::InvalidArgument(
            "The rois_batch_size and imgs "
            "batch_size must be the same. But received rois_batch_size = %d, "
            "batch_size = %d",
            rois_batch_size,
            batch_size));

    std::vector<int> rois_num_list(rois_batch_size);
    paddle::memory::Copy(cplace,
                         rois_num_list.data(),
                         xplace,
                         boxes_num->data<int>(),
                         sizeof(int) * rois_batch_size);
    cpu_lod = new int[rois_batch_size + 1];
    cpu_lod[0] = 0;
    for (int i = 0; i < rois_batch_size; i++) {
      cpu_lod[i + 1] = cpu_lod[i] + rois_num_list[i];
    }
  } else {
    auto lod = boxes.lod();
    PADDLE_ENFORCE_EQ(lod.empty(),
                      false,
                      errors::InvalidArgument("Input(ROIs) in ROIAlignOp does "
                                              "not contain LoD information."));
    auto rois_lod = lod.back();
    rois_batch_size = rois_lod.size() - 1;
    PADDLE_ENFORCE_EQ(
        rois_batch_size,
        batch_size,
        errors::InvalidArgument(
            "The batch size of rois and batch size "
            "of images must be the same. But received rois batch size = %d, "
            "and images batch size = %d",
            rois_batch_size,
            batch_size));
    int rois_num_with_lod = rois_lod[rois_batch_size];
    PADDLE_ENFORCE_EQ(
        rois_num,
        rois_num_with_lod,
        errors::InvalidArgument(
            "The actual number of rois and the number of rois "
            "provided from Input(RoIsLoD) in RoIAlign must be the same."
            " But received actual number of rois is %d, and the number "
            "of rois from RoIsLoD is %d",
            rois_num,
            rois_num_with_lod));
    for (int n = 0; n < rois_batch_size; ++n) {
      for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
        roi_batch_id_data[i] = n;
      }
    }
    cpu_lod = new int[rois_batch_size + 1];
    for (int i = 0; i < rois_batch_size + 1; i++) {
      cpu_lod[i] = rois_lod[i];
    }
  }

  int* roi_id_data = nullptr;
  int r = xpu_malloc(reinterpret_cast<void**>(&roi_id_data),
                     (rois_batch_size + 1) * sizeof(int));
  PADDLE_ENFORCE_XPU_SUCCESS(r);
  paddle::memory::Copy(xplace,
                       roi_id_data,
                       cplace,
                       cpu_lod,
                       (rois_batch_size + 1) * sizeof(int));
  delete[] cpu_lod;
  r = xpu::roi_align<T, int>(dev_ctx.x_context(),
                             x.data<T>(),
                             dev_ctx.template Alloc<T>(out),
                             boxes.data<T>(),
                             roi_id_data,
                             batch_size,
                             channels,
                             height,
                             width,
                             out->dims()[0],
                             pooled_height,
                             pooled_width,
                             spatial_scale,
                             sampling_ratio,
                             true,
                             aligned);
  PADDLE_ENFORCE_XDNN_SUCCESS(r, "roi_align_grad");
  if (dev_ctx.x_context()->xpu_stream) {
    dev_ctx.Wait();
  }
  xpu_free(roi_id_data);
}

}  // namespace phi

PD_REGISTER_KERNEL(roi_align, XPU, ALL_LAYOUT, phi::RoiAlignKernel, float) {}