test_callback_visualdl.py 2.1 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import shutil
16 17
import tempfile
import unittest
L
LielinJiang 已提交
18 19 20

import paddle
import paddle.vision.transforms as T
21
from paddle.fluid.framework import _test_eager_guard
22 23
from paddle.static import InputSpec
from paddle.vision.datasets import MNIST
L
LielinJiang 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37


class MnistDataset(MNIST):
    def __len__(self):
        return 512


class TestCallbacks(unittest.TestCase):
    def setUp(self):
        self.save_dir = tempfile.mkdtemp()

    def tearDown(self):
        shutil.rmtree(self.save_dir)

38
    def func_visualdl_callback(self):
L
LielinJiang 已提交
39 40 41 42 43 44 45
        inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
        labels = [InputSpec([None, 1], 'int64', 'label')]

        transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
        train_dataset = MnistDataset(mode='train', transform=transform)
        eval_dataset = MnistDataset(mode='test', transform=transform)

46
        net = paddle.vision.models.LeNet()
L
LielinJiang 已提交
47 48 49
        model = paddle.Model(net, inputs, labels)

        optim = paddle.optimizer.Adam(0.001, parameters=net.parameters())
50 51 52 53 54
        model.prepare(
            optimizer=optim,
            loss=paddle.nn.CrossEntropyLoss(),
            metrics=paddle.metric.Accuracy(),
        )
L
LielinJiang 已提交
55 56

        callback = paddle.callbacks.VisualDL(log_dir='visualdl_log_dir')
57 58 59
        model.fit(
            train_dataset, eval_dataset, batch_size=64, callbacks=callback
        )
L
LielinJiang 已提交
60

61 62 63 64 65
    def test_visualdl_callback(self):
        with _test_eager_guard():
            self.func_visualdl_callback()
        self.func_visualdl_callback()

L
LielinJiang 已提交
66 67 68

if __name__ == '__main__':
    unittest.main()