test_bicubic_interp_op.py 16.3 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid as fluid
import paddle
from paddle.fluid import Program, program_guard
L
Li Fuchen 已提交
21
from paddle.nn.functional import interpolate
X
xiaoting 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49


def cubic_1(x, a):
    return ((a + 2) * x - (a + 3)) * x * x + 1


def cubic_2(x, a):
    return ((a * x - 5 * a) * x + 8 * a) * x - 4 * a


def cubic_interp1d(x0, x1, x2, x3, t):
    param = [0, 0, 0, 0]
    a = -0.75
    x_1 = t
    x_2 = 1.0 - t
    param[0] = cubic_2(x_1 + 1.0, a)
    param[1] = cubic_1(x_1, a)
    param[2] = cubic_1(x_2, a)
    param[3] = cubic_2(x_2 + 1.0, a)
    return x0 * param[0] + x1 * param[1] + x2 * param[2] + x3 * param[3]


def value_bound(input, w, h, x, y):
    access_x = int(max(min(x, w - 1), 0))
    access_y = int(max(min(y, h - 1), 0))
    return input[:, :, access_y, access_x]


50 51 52 53 54 55 56 57 58
def bicubic_interp_np(
    input,
    out_h,
    out_w,
    out_size=None,
    actual_shape=None,
    align_corners=True,
    data_layout='kNCHW',
):
X
xiaoting 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71
    """trilinear interpolation implement in shape [N, C, H, W]"""
    if data_layout == "NHWC":
        input = np.transpose(input, (0, 3, 1, 2))  # NHWC => NCHW
    if out_size is not None:
        out_h = out_size[0]
        out_w = out_size[1]
    if actual_shape is not None:
        out_h = actual_shape[0]
        out_w = actual_shape[1]
    batch_size, channel, in_h, in_w = input.shape

    ratio_h = ratio_w = 0.0
    if out_h > 1:
72
        if align_corners:
X
xiaoting 已提交
73 74 75 76 77
            ratio_h = (in_h - 1.0) / (out_h - 1.0)
        else:
            ratio_h = 1.0 * in_h / out_h

    if out_w > 1:
78
        if align_corners:
X
xiaoting 已提交
79 80 81 82 83 84 85
            ratio_w = (in_w - 1.0) / (out_w - 1.0)
        else:
            ratio_w = 1.0 * in_w / out_w

    out = np.zeros((batch_size, channel, out_h, out_w))

    for k in range(out_h):
86
        if align_corners:
X
xiaoting 已提交
87 88 89
            h = ratio_h * k
        else:
            h = ratio_h * (k + 0.5) - 0.5
90
        input_y = np.floor(h)
X
xiaoting 已提交
91 92
        y_t = h - input_y
        for l in range(out_w):
93
            if align_corners:
X
xiaoting 已提交
94 95 96
                w = ratio_w * l
            else:
                w = ratio_w * (l + 0.5) - 0.5
97
            input_x = np.floor(w)
X
xiaoting 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111
            x_t = w - input_x
            for i in range(batch_size):
                for j in range(channel):
                    coefficients = [0, 0, 0, 0]
                    for ii in range(4):
                        access_x_0 = int(max(min(input_x - 1, in_w - 1), 0))
                        access_x_1 = int(max(min(input_x + 0, in_w - 1), 0))
                        access_x_2 = int(max(min(input_x + 1, in_w - 1), 0))
                        access_x_3 = int(max(min(input_x + 2, in_w - 1), 0))
                        access_y = int(max(min(input_y - 1 + ii, in_h - 1), 0))

                        coefficients[ii] = cubic_interp1d(
                            input[i, j, access_y, access_x_0],
                            input[i, j, access_y, access_x_1],
112 113 114 115 116 117 118 119 120 121 122
                            input[i, j, access_y, access_x_2],
                            input[i, j, access_y, access_x_3],
                            x_t,
                        )
                    out[i, j, k, l] = cubic_interp1d(
                        coefficients[0],
                        coefficients[1],
                        coefficients[2],
                        coefficients[3],
                        y_t,
                    )
X
xiaoting 已提交
123 124 125 126 127 128 129 130 131 132 133 134
    if data_layout == "NHWC":
        out = np.transpose(out, (0, 2, 3, 1))  # NCHW => NHWC
    return out.astype(input.dtype)


class TestBicubicInterpOp(OpTest):
    def setUp(self):
        self.out_size = None
        self.actual_shape = None
        self.data_layout = 'NCHW'
        self.init_test_case()
        self.op_type = "bicubic_interp"
135 136 137
        # NOTE(dev): some AsDispensible input is not used under imperative mode.
        # Skip check_eager while found them in Inputs.
        self.check_eager = True
X
xiaoting 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
        input_np = np.random.random(self.input_shape).astype("float64")

        if self.data_layout == "NCHW":
            in_h = self.input_shape[2]
            in_w = self.input_shape[3]
        else:
            in_h = self.input_shape[1]
            in_w = self.input_shape[2]

        if self.scale > 0:
            out_h = int(in_h * self.scale)
            out_w = int(in_w * self.scale)
        else:
            out_h = self.out_h
            out_w = self.out_w

154 155 156 157 158 159 160 161 162
        output_np = bicubic_interp_np(
            input_np,
            out_h,
            out_w,
            self.out_size,
            self.actual_shape,
            self.align_corners,
            self.data_layout,
        )
X
xiaoting 已提交
163 164 165
        self.inputs = {'X': input_np}
        if self.out_size is not None:
            self.inputs['OutSize'] = self.out_size
166
            self.check_eager = False
X
xiaoting 已提交
167 168
        if self.actual_shape is not None:
            self.inputs['OutSize'] = self.actual_shape
169
            self.check_eager = False
X
xiaoting 已提交
170 171 172 173 174 175 176

        self.attrs = {
            'out_h': self.out_h,
            'out_w': self.out_w,
            'scale': self.scale,
            'interp_method': self.interp_method,
            'align_corners': self.align_corners,
177
            'data_layout': self.data_layout,
X
xiaoting 已提交
178 179 180 181
        }
        self.outputs = {'Out': output_np}

    def test_check_output(self):
182
        self.check_output(check_eager=self.check_eager)
X
xiaoting 已提交
183 184

    def test_check_grad(self):
185 186 187
        self.check_grad(
            ['X'], 'Out', in_place=True, check_eager=self.check_eager
        )
X
xiaoting 已提交
188 189 190 191 192 193

    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [2, 3, 5, 5]
        self.out_h = 2
        self.out_w = 2
194
        self.scale = 0.0
X
xiaoting 已提交
195 196 197 198 199 200 201 202 203 204
        self.out_size = np.array([3, 3]).astype("int32")
        self.align_corners = True


class TestBicubicInterpCase1(TestBicubicInterpOp):
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [4, 1, 7, 8]
        self.out_h = 1
        self.out_w = 1
205
        self.scale = 0.0
X
xiaoting 已提交
206 207 208 209 210 211 212 213 214
        self.align_corners = True


class TestBicubicInterpCase2(TestBicubicInterpOp):
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [3, 3, 9, 6]
        self.out_h = 10
        self.out_w = 8
215
        self.scale = 0.0
X
xiaoting 已提交
216 217 218 219 220 221 222 223 224
        self.align_corners = True


class TestBicubicInterpCase3(TestBicubicInterpOp):
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [1, 1, 32, 64]
        self.out_h = 64
        self.out_w = 32
225
        self.scale = 0.0
X
xiaoting 已提交
226 227 228 229 230 231 232 233 234
        self.align_corners = False


class TestBicubicInterpCase4(TestBicubicInterpOp):
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [4, 1, 7, 8]
        self.out_h = 1
        self.out_w = 1
235
        self.scale = 0.0
X
xiaoting 已提交
236 237 238 239 240 241 242 243 244 245
        self.out_size = np.array([2, 2]).astype("int32")
        self.align_corners = True


class TestBicubicInterpCase5(TestBicubicInterpOp):
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [3, 3, 9, 6]
        self.out_h = 11
        self.out_w = 11
246
        self.scale = 0.0
X
xiaoting 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
        self.out_size = np.array([6, 4]).astype("int32")
        self.align_corners = False


class TestBicubicInterpCase6(TestBicubicInterpOp):
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [1, 1, 32, 64]
        self.out_h = 64
        self.out_w = 32
        self.scale = 0
        self.out_size = np.array([64, 32]).astype("int32")
        self.align_corners = False


class TestBicubicInterpSame(TestBicubicInterpOp):
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [2, 3, 32, 64]
        self.out_h = 32
        self.out_w = 64
268
        self.scale = 0.0
X
xiaoting 已提交
269 270 271 272 273 274 275 276 277
        self.align_corners = True


class TestBicubicInterpDataLayout(TestBicubicInterpOp):
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [2, 5, 5, 3]
        self.out_h = 2
        self.out_w = 2
278
        self.scale = 0.0
X
xiaoting 已提交
279 280 281 282 283 284 285
        self.out_size = np.array([3, 3]).astype("int32")
        self.align_corners = True
        self.data_layout = "NHWC"


class TestBicubicInterpOpAPI(unittest.TestCase):
    def test_case(self):
286
        np.random.seed(200)
X
xiaoting 已提交
287 288 289 290 291 292 293 294
        x_data = np.random.random((2, 3, 6, 6)).astype("float32")
        dim_data = np.array([12]).astype("int32")
        shape_data = np.array([12, 12]).astype("int32")
        actual_size_data = np.array([12, 12]).astype("int32")
        scale_data = np.array([2.0]).astype("float32")

        prog = fluid.Program()
        startup_prog = fluid.Program()
295 296 297 298 299
        place = (
            fluid.CUDAPlace(0)
            if fluid.core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
X
xiaoting 已提交
300 301 302 303 304 305

        with fluid.program_guard(prog, startup_prog):

            x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")

            dim = fluid.data(name="dim", shape=[1], dtype="int32")
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
            shape_tensor = fluid.data(
                name="shape_tensor", shape=[2], dtype="int32"
            )
            actual_size = fluid.data(
                name="actual_size", shape=[2], dtype="int32"
            )
            scale_tensor = fluid.data(
                name="scale_tensor", shape=[1], dtype="float32"
            )

            out1 = interpolate(
                x, size=[12, 12], mode='bicubic', align_corners=False
            )
            out2 = interpolate(
                x, size=[12, dim], mode='bicubic', align_corners=False
            )
            out3 = interpolate(
                x, size=shape_tensor, mode='bicubic', align_corners=False
            )
            out4 = interpolate(
                x, size=[12, 12], mode='bicubic', align_corners=False
            )
            out5 = interpolate(
                x,
                scale_factor=scale_tensor,
                mode='bicubic',
                align_corners=False,
            )
X
xiaoting 已提交
334 335 336

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
            results = exe.run(
                fluid.default_main_program(),
                feed={
                    "x": x_data,
                    "dim": dim_data,
                    "shape_tensor": shape_data,
                    "actual_size": actual_size_data,
                    "scale_tensor": scale_data,
                },
                fetch_list=[out1, out2, out3, out4, out5],
                return_numpy=True,
            )

            expect_res = bicubic_interp_np(
                x_data, out_h=12, out_w=12, align_corners=False
            )
X
xiaoting 已提交
353
            for res in results:
354
                np.testing.assert_allclose(res, expect_res, rtol=1e-05)
X
xiaoting 已提交
355 356 357

        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(x_data)
358 359 360
            interp = interpolate(
                x, size=[12, 12], mode='bicubic', align_corners=False
            )
X
xiaoting 已提交
361
            dy_result = interp.numpy()
362 363 364
            expect = bicubic_interp_np(
                x_data, out_h=12, out_w=12, align_corners=False
            )
365
            np.testing.assert_allclose(dy_result, expect, rtol=1e-05)
X
xiaoting 已提交
366 367 368 369 370 371


class TestBicubicOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # the input of interpoalte must be Variable.
372 373 374
            x1 = fluid.create_lod_tensor(
                np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()
            )
X
xiaoting 已提交
375 376 377 378 379 380
            self.assertRaises(TypeError, interpolate, x1)

            def test_mode_type():
                # mode must be "BILINEAR" "TRILINEAR" "NEAREST" "BICUBIC"
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")

381 382 383
                out = interpolate(
                    x, size=[12, 12], mode='UNKONWN', align_corners=False
                )
X
xiaoting 已提交
384 385 386

            def test_input_shape():
                x = fluid.data(name="x", shape=[2], dtype="float32")
387 388 389
                out = interpolate(
                    x, size=[12, 12], mode='BICUBIC', align_corners=False
                )
X
xiaoting 已提交
390 391 392

            def test_align_corcers():
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
393
                interpolate(x, size=[12, 12], mode='BICUBIC', align_corners=3)
X
xiaoting 已提交
394 395 396

            def test_out_shape():
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
397 398 399
                out = interpolate(
                    x, size=[12], mode='bicubic', align_corners=False
                )
X
xiaoting 已提交
400 401 402

            def test_attr_data_format():
                # for 5-D input, data_format only can be NCDHW or NDHWC
403 404 405 406 407 408 409 410 411
                input = fluid.data(
                    name="input", shape=[2, 3, 6, 9, 4], dtype="float32"
                )
                out = interpolate(
                    input,
                    size=[4, 8, 4, 5],
                    mode='trilinear',
                    data_format='NHWC',
                )
X
xiaoting 已提交
412 413 414

            def test_actual_shape():
                # the actual_shape  must be Variable.
415 416 417 418 419 420
                x = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()
                )
                out = interpolate(
                    x, size=[12, 12], mode='BICUBIC', align_corners=False
                )
X
xiaoting 已提交
421 422 423 424

            def test_scale_value():
                # the scale must be greater than zero.
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
425 426 427 428 429 430 431
                out = interpolate(
                    x,
                    size=None,
                    mode='BICUBIC',
                    align_corners=False,
                    scale_factor=-2.0,
                )
X
xiaoting 已提交
432 433 434

            def test_attr_5D_input():
                # for 5-D input, data_format only can be NCDHW or NDHWC
435 436 437 438 439 440 441 442 443
                input = fluid.data(
                    name="input", shape=[2, 3, 6, 9, 4], dtype="float32"
                )
                out = interpolate(
                    input,
                    size=[4, 8, 4, 5],
                    mode='trilinear',
                    data_format='NDHWC',
                )
X
xiaoting 已提交
444 445 446 447

            def test_scale_type():
                # the scale must be greater than zero.
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
448 449 450 451 452 453 454 455 456 457
                scale = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()
                )
                out = interpolate(
                    x,
                    size=None,
                    mode='bicubic',
                    align_corners=False,
                    scale_factor=scale,
                )
X
xiaoting 已提交
458 459 460

            def test_align_mode():
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
461 462 463 464 465 466 467 468
                out = interpolate(
                    x,
                    size=None,
                    mode='nearest',
                    align_corners=False,
                    align_mode=2,
                    scale_factor=1.0,
                )
X
xiaoting 已提交
469 470 471

            def test_outshape_and_scale():
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
472 473 474 475 476 477 478
                out = interpolate(
                    x,
                    size=None,
                    mode='bicubic',
                    align_corners=False,
                    scale_factor=None,
                )
X
xiaoting 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493

            self.assertRaises(ValueError, test_mode_type)
            self.assertRaises(ValueError, test_input_shape)
            self.assertRaises(TypeError, test_align_corcers)
            self.assertRaises(ValueError, test_attr_data_format)
            self.assertRaises(TypeError, test_actual_shape)
            self.assertRaises(ValueError, test_scale_value)
            self.assertRaises(ValueError, test_out_shape)
            self.assertRaises(ValueError, test_attr_5D_input)
            self.assertRaises(TypeError, test_scale_type)
            self.assertRaises(ValueError, test_align_mode)
            self.assertRaises(ValueError, test_outshape_and_scale)


if __name__ == "__main__":
494
    paddle.enable_static()
X
xiaoting 已提交
495
    unittest.main()