conv_grad_kernel.cc 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/conv_grad_kernel.h"

#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/conv_util.h"

namespace phi {

template <typename T, typename Context>
void ConvGradKernel(const Context& dev_ctx,
                    const DenseTensor& input,
                    const DenseTensor& filter,
                    const DenseTensor& out_grad,
                    const std::vector<int>& strides,
                    const std::vector<int>& paddings_t,
                    const std::string& padding_algorithm,
                    int groups,
                    const std::vector<int>& dilations_t,
                    const std::string& data_format,
                    bool use_addto,
                    int workspace_size_MB,
                    bool exhaustive_search,
                    DenseTensor* input_grad,
                    DenseTensor* filter_grad) {
  using XPUT = typename XPUTypeTrait<T>::Type;
  std::vector<int> paddings = paddings_t;
  std::vector<int> dilations = dilations_t;
  // The filter and filter_grad will be reshaped in the calculations,
  // so here use an assignment operation,
  // that avoids modifying the variable in the Scope.
  if (!input_grad && !filter_grad) return;
  PADDLE_ENFORCE_EQ(
      data_format == "NDHWC",
      false,
      phi::errors::InvalidArgument(
          ("XPU doesn't support data_format is NDHWC in conv grad op.")));

  phi::DDim in_data_dims =
      phi::slice_ddim(input.dims(), 2, input.dims().size());
  phi::DDim filter_data_dims =
      phi::slice_ddim(filter.dims(), 2, filter.dims().size());
  std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
  std::vector<int> filter_shape = phi::vectorize<int>(filter.dims());
  UpdatePaddingAndDilation(
      &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);

  int batch_size = static_cast<int>(input.dims()[0]);
  int img_c = static_cast<int>(input.dims()[1]);
  int img_h = static_cast<int>(input.dims()[2]);
  int img_w = static_cast<int>(input.dims()[3]);
  int f = static_cast<int>(filter.dims()[0]);
  bool is_nchw = true;
  if (data_format == "NHWC") {
    img_c = static_cast<int>(input.dims()[3]);
    img_h = static_cast<int>(input.dims()[1]);
    img_w = static_cast<int>(input.dims()[2]);
    is_nchw = false;
  }

  const XPUT* input_data = reinterpret_cast<const XPUT*>(input.data<T>());
  const XPUT* filter_data = reinterpret_cast<const XPUT*>(filter.data<T>());
  const XPUT* output_grad_data =
      reinterpret_cast<const XPUT*>(out_grad.data<T>());
  XPUT* input_grad_data = nullptr;
  if (input_grad) {
    dev_ctx.template Alloc<T>(input_grad);
    input_grad_data = reinterpret_cast<XPUT*>(input_grad->data<T>());
  }
  XPUT* filter_grad_data = nullptr;
  if (filter_grad) {
    dev_ctx.template Alloc<T>(filter_grad);
    filter_grad_data = reinterpret_cast<XPUT*>(filter_grad->data<T>());
  }
  xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());

  XPUT* filter_data_tmp;
  XPUT* filter_grad_data_tmp;
  const XPUT* filter_data_ptr = filter_data;
  XPUT* filter_grad_data_ptr = filter_grad_data;
  if (data_format == "NHWC") {
    filter_data_tmp = RAII_GUARD.alloc<XPUT>(filter.numel());
    PADDLE_ENFORCE_XDNN_NOT_NULL(filter_data_tmp);
    int r = xpu::transpose<XPUT>(dev_ctx.x_context(),
                                 filter_data,
                                 filter_data_tmp,
                                 filter_shape,
                                 {0, 2, 3, 1});
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "transpose");
    filter_data_ptr = reinterpret_cast<const XPUT*>(filter_data_tmp);

    if (filter_grad_data != nullptr) {
      filter_grad_data_tmp = RAII_GUARD.alloc<XPUT>(filter.numel());
      PADDLE_ENFORCE_XDNN_NOT_NULL(filter_grad_data_tmp);
      filter_grad_data_ptr = filter_grad_data_tmp;
    }
  }
  int r = xpu::conv2d_grad<XPUT, XPUT, XPUT, int16_t>(dev_ctx.x_context(),
                                                      input_data,
                                                      filter_data_ptr,
                                                      output_grad_data,
                                                      input_grad_data,
                                                      filter_grad_data_ptr,
                                                      batch_size,
                                                      img_c,
                                                      img_h,
                                                      img_w,
                                                      f,
                                                      ksize,
                                                      strides,
                                                      paddings,
                                                      dilations,
                                                      groups,
                                                      nullptr,
                                                      nullptr,
                                                      nullptr,
                                                      nullptr,
                                                      nullptr,
                                                      is_nchw);
  PADDLE_ENFORCE_XDNN_SUCCESS(r, "conv2d_grad");

  if ((filter_grad_data_ptr != nullptr) && (data_format == "NHWC")) {
    std::vector<int> filter_shape_fhwc = {
        filter_shape[0], filter_shape[2], filter_shape[3], filter_shape[1]};
    int r = xpu::transpose<XPUT>(dev_ctx.x_context(),
                                 filter_grad_data_ptr,
                                 filter_grad_data,
                                 filter_shape_fhwc,
                                 {0, 3, 1, 2});
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "transpose");
  }
}

template <typename T, typename Context>
void DepthwiseConvGradKernel(const Context& dev_ctx,
                             const DenseTensor& input,
                             const DenseTensor& filter,
                             const DenseTensor& out_grad,
                             const std::vector<int>& strides,
                             const std::vector<int>& paddings,
                             const std::string& paddding_algorithm,
                             int groups,
                             const std::vector<int>& dilations,
                             const std::string& data_format,
                             bool use_addto,
                             int workspace_size_MB,
                             bool exhaustive_search,
                             bool fuse_relu,
                             DenseTensor* input_grad,
                             DenseTensor* filter_grad) {
  ConvGradKernel<T, Context>(dev_ctx,
                             input,
                             filter,
                             out_grad,
                             strides,
                             paddings,
                             paddding_algorithm,
                             groups,
                             dilations,
                             data_format,
                             use_addto,
                             workspace_size_MB,
                             exhaustive_search,
                             input_grad,
                             filter_grad);
}

}  // namespace phi

PD_REGISTER_KERNEL(conv2d_grad,
                   XPU,
                   ALL_LAYOUT,
                   phi::ConvGradKernel,
                   float,
                   phi::dtype::float16) {}

PD_REGISTER_KERNEL(depthwise_conv2d_grad,
                   XPU,
                   ALL_LAYOUT,
                   phi::DepthwiseConvGradKernel,
                   float) {}