voc2012.py 4.4 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import io
import tarfile
import numpy as np
from PIL import Image

from paddle.io import Dataset
23
from paddle.dataset.common import _check_exists_and_download
K
Kaipeng Deng 已提交
24 25 26 27 28 29

__all__ = ["VOC2012"]

VOC_URL = 'http://host.robots.ox.ac.uk/pascal/VOC/voc2012/\
VOCtrainval_11-May-2012.tar'

30
VOC_MD5 = '6cd6e144f989b92b3379bac3b3de84fd'
K
Kaipeng Deng 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
SET_FILE = 'VOCdevkit/VOC2012/ImageSets/Segmentation/{}.txt'
DATA_FILE = 'VOCdevkit/VOC2012/JPEGImages/{}.jpg'
LABEL_FILE = 'VOCdevkit/VOC2012/SegmentationClass/{}.png'

CACHE_DIR = 'voc2012'

MODE_FLAG_MAP = {'train': 'trainval', 'test': 'train', 'valid': "val"}


class VOC2012(Dataset):
    """
    Implementation of `VOC2012 <http://host.robots.ox.ac.uk/pascal/VOC/voc2012/>`_ dataset

    Args:
        data_file(str): path to data file, can be set None if
            :attr:`download` is True. Default None
        mode(str): 'train', 'valid' or 'test' mode. Default 'train'.
        download(bool): whether to download dataset automatically if
            :attr:`data_file` is not set. Default True

    Examples:

        .. code-block:: python

55 56
            import paddle
            from paddle.vision.datasets import VOC2012
K
Kaipeng Deng 已提交
57

58 59 60
            class SimpleNet(paddle.nn.Layer):
                def __init__(self):
                    super(SimpleNet, self).__init__()
K
Kaipeng Deng 已提交
61

62 63
                def forward(self, image, label):
                    return paddle.sum(image), label
K
Kaipeng Deng 已提交
64

65
            paddle.disable_static()
K
Kaipeng Deng 已提交
66

67
            voc2012 = VOC2012(mode='train')
K
Kaipeng Deng 已提交
68

69 70 71 72
            for i in range(10):
                image, label= voc2012[i]
                image = paddle.cast(paddle.to_tensor(image), 'float32')
                label = paddle.to_tensor(label)
K
Kaipeng Deng 已提交
73

74 75 76
                model = SimpleNet()
                image, label= model(image, label)
                print(image.numpy().shape, label.numpy().shape)
K
Kaipeng Deng 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

    """

    def __init__(self,
                 data_file=None,
                 mode='train',
                 transform=None,
                 download=True):
        assert mode.lower() in ['train', 'valid', 'test'], \
            "mode should be 'train', 'valid' or 'test', but got {}".format(mode)
        self.flag = MODE_FLAG_MAP[mode.lower()]

        self.data_file = data_file
        if self.data_file is None:
            assert download, "data_file is not set and downloading automatically is disabled"
            self.data_file = _check_exists_and_download(
                data_file, VOC_URL, VOC_MD5, CACHE_DIR, download)
        self.transform = transform

        # read dataset into memory
        self._load_anno()

    def _load_anno(self):
        self.name2mem = {}
        self.data_tar = tarfile.open(self.data_file)
        for ele in self.data_tar.getmembers():
            self.name2mem[ele.name] = ele

        set_file = SET_FILE.format(self.flag)
        sets = self.data_tar.extractfile(self.name2mem[set_file])

        self.data = []
        self.labels = []

        for line in sets:
            line = line.strip()
            data = DATA_FILE.format(line.decode('utf-8'))
            label = LABEL_FILE.format(line.decode('utf-8'))
            self.data.append(data)
            self.labels.append(label)

    def __getitem__(self, idx):
        data_file = self.data[idx]
        label_file = self.labels[idx]

        data = self.data_tar.extractfile(self.name2mem[data_file]).read()
        label = self.data_tar.extractfile(self.name2mem[label_file]).read()
        data = Image.open(io.BytesIO(data))
        label = Image.open(io.BytesIO(label))
        data = np.array(data)
        label = np.array(label)
        if self.transform is not None:
            data = self.transform(data)
        return data, label

    def __len__(self):
        return len(self.data)
134 135 136 137

    def __del__(self):
        if self.data_tar:
            self.data_tar.close()