lod_tensor.py 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import core
18
from .data_feeder import DataToLoDTensorConverter
19 20 21 22 23
import numpy as np

__all__ = ['create_lod_tensor', 'create_random_int_lodtensor']


K
Kexin Zhao 已提交
24
def create_lod_tensor(data, recursive_seq_lens, place):
Y
yuyang18 已提交
25 26
    """
    Create a lod tensor from a numpy array, a list, or an existing lod tensor.
27 28

    Create a lod tensor by doing the following:
Y
yuyang18 已提交
29

30
    1. Check that the length-based level of detail (LoD) also known as
K
Kexin Zhao 已提交
31
       recursive_sequence_lengths of the input is valid.
Y
yuyang18 已提交
32

K
Kexin Zhao 已提交
33
    2. Convert recursive_sequence_lengths to a offset-based LoD.
Y
yuyang18 已提交
34 35

    3. Copy the data from a numpy array, a list or a existing lod tensor to
36
       CPU or GPU device (based on input place).
Y
yuyang18 已提交
37

38
    4. Set the level of detail (LoD) using the offset-based LoD.
39

Y
yuyang18 已提交
40
    Examples:
41

Y
yuyang18 已提交
42 43
        Suppose we want LoDTensor to hold data for sequences of word, where each
        word is represented by an integer. If we want to create a LoDTensor to
K
Kexin Zhao 已提交
44
        represent two sentences, one of 2 words, and one of 3 words.
45

Y
yuyang18 已提交
46
        Then :code:`data` can be a numpy array of integers with shape (5, 1).
K
Kexin Zhao 已提交
47 48 49
        :code:`recursive_seq_lens` will be [[2, 3]], indicating the length(# of words) in each
        sentence. This length-based :code:`recursive_seq_lens` [[2, 3]] will be converted to
        offset-based LoD [[0, 2, 5]] inside the function call.
Y
yuyang18 已提交
50

Z
Zeng Jinle 已提交
51 52 53 54 55 56 57
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          t = fluid.create_lod_tensor(np.ndarray([5, 30]), [[2, 3]], fluid.CPUPlace())

Y
yuyang18 已提交
58 59
    Please reference :ref:`api_guide_low_level_lod_tensor` for more details
    regarding LoD.
60 61

    Args:
Y
yuyang18 已提交
62
        data(numpy.ndarray|list|LoDTensor): a numpy array or a LoDTensor or a
K
Kexin Zhao 已提交
63
            list holding the data to be copied.
64
        recursive_seq_lens(list): a list of lists indicating the length-based level of detail
K
Kexin Zhao 已提交
65
            info specified by the user.
Y
yuyang18 已提交
66 67
        place(Place): CPU or GPU place indicating where the data in the new
            LoDTensor will be stored.
68 69

    Returns:
K
Kexin Zhao 已提交
70
        A fluid LoDTensor object with tensor data and recursive_seq_lens info.
71 72
    """
    if isinstance(data, core.LoDTensor):
K
Kexin Zhao 已提交
73
        return create_lod_tensor(np.array(data), recursive_seq_lens, place)
74
    elif isinstance(data, list):
75 76 77 78 79 80 81 82
        # dtype and shape is not important here,
        # we only want to reuse code of DataToLoDTensorConverter
        converter = DataToLoDTensorConverter(
            place=place,
            lod_level=len(recursive_seq_lens),
            shape=[],
            dtype=core.VarDesc.VarType.FP32)

K
Kexin Zhao 已提交
83
        new_recursive_seq_lens = []
84
        for seq in data:
K
Kexin Zhao 已提交
85
            new_recursive_seq_lens.append(len(seq))
86 87
            converter.feed(seq)

K
Kexin Zhao 已提交
88 89 90
        assert [
            new_recursive_seq_lens
        ] == recursive_seq_lens, "data and recursive_seq_lens do not match"
91 92 93 94 95 96 97 98 99 100 101

        arr = np.array(converter.data)

        # FIXME(zjl): the original logic of create_lod_tensor would append
        # 1 to the shape. Maybe it is not a right way? Currently, we only
        # follow the previous logic
        arr = arr.reshape(arr.shape + (1, ))
        tensor = core.LoDTensor()
        tensor.set(arr, place)
        tensor.set_recursive_sequence_lengths(recursive_seq_lens)
        return tensor
102 103 104
    elif isinstance(data, np.ndarray):
        tensor = core.LoDTensor()
        tensor.set(data, place)
K
Kexin Zhao 已提交
105
        tensor.set_recursive_sequence_lengths(recursive_seq_lens)
106 107
        assert tensor.has_valid_recursive_sequence_lengths(
        ), "the provided lod info is invalid"
108 109
        return tensor
    else:
110 111
        raise TypeError(
            "data should be either a LoDTensor, a Numpy array or a list")
112 113


K
Kexin Zhao 已提交
114 115
def create_random_int_lodtensor(recursive_seq_lens, base_shape, place, low,
                                high):
Y
yuyang18 已提交
116 117
    """
    Create a LoDTensor containing random integers.
118

Y
yuyang18 已提交
119 120 121
    This function is frequently used in the book examples. So we revised it
    based on the new create_lod_tensor API and put it here in the lod_tensor
    module to simplify the code.
122 123

    The function does the following:
Y
yuyang18 已提交
124 125

    1. Calculate the overall shape of the LoDTensor based on the length-based
K
Kexin Zhao 已提交
126
       :code:`recursive_seq_lens` input and the shape of the basic element in
Y
yuyang18 已提交
127 128
       :code:`base_shape`.

129
    2. Create a numpy array of this shape.
Y
yuyang18 已提交
130

131 132
    3. Create the LoDTensor using create_lod_tensor API.

Y
yuyang18 已提交
133 134 135
    Suppose we want LoDTensor to hold data for sequences of word, where each
    word is represented by an integer. If we want to create a LoDTensor to
    represent two sentences, one of 2 words, and one of 3 words. Then
136 137
    'base_shape' is [1], input length-based 'recursive_seq_lens' is [[2, 3]].
    Then the overall shape of the LoDTensor would be [5, 1], holding 5 words
K
Kexin Zhao 已提交
138
    for two sentences.
139 140

    Args:
141
        recursive_seq_lens(list): a list of lists indicating the length-based
K
Kexin Zhao 已提交
142
            level of detail info specified by the user.
Y
yuyang18 已提交
143 144 145 146 147 148
        base_shape(list): the shape of the basic element to be held by the
            LoDTensor.
        place(Place): CPU or GPU place indicating where the data in the new
            LoDTensor will be stored.
        low(int): the lower bound of the random integers.
        high(int): the upper bound of the random integers.
149 150

    Returns:
151
        A fluid LoDTensor object with tensor data and recursive_seq_lens info.
Z
Zeng Jinle 已提交
152 153 154 155 156 157 158 159

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.create_random_int_lodtensor(recursive_seq_lens=[[2, 3]], 
                base_shape=[30], place=fluid.CPUPlace(), low=0, high=10)
160 161 162
    """
    assert isinstance(base_shape, list), "base_shape should be a list"
    # append the total number of basic elements to the front of its shape
K
Kexin Zhao 已提交
163
    overall_shape = [sum(recursive_seq_lens[-1])] + base_shape
164
    # the range of integer data elements is [low, high]
165
    data = np.random.random_integers(low, high, overall_shape).astype("int64")
K
Kexin Zhao 已提交
166
    return create_lod_tensor(data, recursive_seq_lens, place)