depthwise_conv_kernel.cu 4.5 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/conv_util.h"
#include "paddle/phi/kernels/funcs/batch_norm_utils.h"
19
#include "paddle/phi/kernels/gpu/depthwise_conv.h"
H
hong 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

namespace phi {

template <typename T, typename Context>
void DepthwiseConvKernel(const Context& dev_ctx,
                         const DenseTensor& input,
                         const DenseTensor& filter,
                         const std::vector<int>& strides_t,
                         const std::vector<int>& paddings_t,
                         const std::string& padding_algorithm,
                         int groups,
                         const std::vector<int>& dilations_t,
                         const std::string& data_format,
                         DenseTensor* out) {
  DenseTensor* output = out;
  output->mutable_data<T>(dev_ctx.GetPlace());

  const std::vector<int> strides = strides_t;
  std::vector<int> dilations = dilations_t;
  std::vector<int> paddings = paddings_t;

  const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");
42 43 44 45 46 47 48 49

  bool has_fuse_relu = dev_ctx.HasDnnAttr("fuse_relu_before_depthwise_conv");
  bool fuse_relu =
      has_fuse_relu
          ? PADDLE_GET_CONST(
                bool, dev_ctx.GetDnnAttr("fuse_relu_before_depthwise_conv"))
          : false;

H
hong 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
  if (channel_last) {
    PADDLE_ENFORCE_EQ(
        output->dims()[output->dims().size() - 1] %
            input.dims()[input.dims().size() - 1],
        0,
        phi::errors::InvalidArgument(
            "ShapeError: The output channels must be a multiple of the "
            "input channels. But receivced output channel number is %d "
            "and input channel number is %d",
            output->dims()[output->dims().size() - 1],
            input.dims()[input.dims().size() - 1]));
  } else {
    PADDLE_ENFORCE_EQ(
        output->dims()[1] % input.dims()[1],
        0,
        phi::errors::InvalidArgument(
            "ShapeError: The output channels must be a multiple of the "
            "input channels. But receivced output channel number is %d "
            "and input channel number is %d",
            output->dims()[1],
            input.dims()[1]));
  }

  // update padding and dilation
  auto in_dims = input.dims();
  auto filter_dims = filter.dims();

  DDim in_data_dims;
78 79
  const phi::DataLayout data_layout = phi::StringToDataLayout(data_format);
  if (data_layout != phi::DataLayout::kNHWC) {
H
hong 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    in_data_dims = slice_ddim(in_dims, 2, in_dims.size());
  } else {
    in_data_dims = slice_ddim(in_dims, 1, in_dims.size() - 1);
  }

  DDim filter_data_dims = slice_ddim(filter_dims, 2, filter_dims.size());
  std::vector<int> ksize = vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(
      &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);

  bool is_sys_pad = strides.size() * 2 == paddings.size() ? false : true;
  if (!is_sys_pad) {
    for (size_t i = 0; i < strides.size(); ++i) {
      paddings.erase(paddings.begin() + i + 1);
    }
  }

  if (fuse_relu) {
    paddle::operators::math::DepthwiseConvFunctor<Context, T, true>
        depthwiseConv;
    depthwiseConv(dev_ctx,
                  input,
                  filter,
                  strides,
                  paddings,
                  dilations,
                  output,
                  data_layout);
  } else {
    paddle::operators::math::DepthwiseConvFunctor<Context, T, false>
        depthwiseConv;
    depthwiseConv(dev_ctx,
                  input,
                  filter,
                  strides,
                  paddings,
                  dilations,
                  output,
                  data_layout);
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(depthwise_conv2d,
                   GPU,
                   ALL_LAYOUT,
                   phi::DepthwiseConvKernel,
                   float,
129 130
                   double,
                   phi::dtype::float16) {}