search_compute.h 5.1 KB
Newer Older
A
Aurelius84 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <immintrin.h>
#include <cfloat>
#include <cmath>
#include <cstring>

#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;

template <typename DeviceContext, typename T>
void call_gemm(const math::BlasT<DeviceContext, T>& blas,
               const CBLAS_TRANSPOSE TransA, const CBLAS_TRANSPOSE TransB,
               const int M, const int N, const int K, const T alpha, const T* A,
               const T* B, const T beta, T* C) {
  int lda = (TransA == CblasNoTrans) ? K : M;
  int ldb = (TransB == CblasNoTrans) ? N : K;
  blas.GEMM(TransA, TransB, M, N, K, alpha, A, lda, B, ldb, beta, C, N);
}

template <typename T>
void call_gemm(const framework::ExecutionContext& ctx,
               const CBLAS_TRANSPOSE TransA, const CBLAS_TRANSPOSE TransB,
               const int M, const int N, const int K, const T alpha, const T* A,
               const T* B, const T beta, T* C) {
  int lda = (TransA == CblasNoTrans) ? K : M;
  int ldb = (TransB == CblasNoTrans) ? N : K;
  auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
  blas.GEMM(TransA, TransB, M, N, K, alpha, A, lda, B, ldb, beta, C, N);
}

template <typename DeviceContext, typename T>
void call_gemm_with_lda(const math::BlasT<DeviceContext, T>& blas,
                        const CBLAS_TRANSPOSE TransA,
                        const CBLAS_TRANSPOSE TransB, const int M, const int N,
                        const int K, const T alpha, const T* A, const T* B,
                        const T beta, T* C, int lda) {
  int ldb = (TransB == CblasNoTrans) ? N : K;

  blas.GEMM(TransA, TransB, M, N, K, alpha, A, lda, B, ldb, beta, C, N);
}

template <typename T>
void call_gemm_batched(const framework::ExecutionContext& ctx,
                       const CBLAS_TRANSPOSE TransA,
                       const CBLAS_TRANSPOSE TransB, const int M, const int N,
                       const int K, const T alpha, const T** A, const T** B,
                       const T beta, T** C, const int batch) {
  for (int i = 0; i < batch; ++i) {
    call_gemm(ctx, TransA, TransB, M, N, K, alpha, A[i], B[i], beta, C[i]);
  }
}

#define __m256x __m256

static const unsigned int AVX_STEP_SIZE = 8;
static const unsigned int AVX_CUT_LEN_MASK = 7U;

#define _mm256_mul_px _mm256_mul_ps
#define _mm256_add_px _mm256_add_ps
#define _mm256_load_px _mm256_loadu_ps
#define _mm256_store_px _mm256_storeu_ps
#define _mm256_broadcast_sx _mm256_broadcast_ss

86
#define __m128x __m128
87

88 89 90 91 92 93 94 95 96 97 98
static const unsigned int SSE_STEP_SIZE = 2;
static const unsigned int SSE_CUT_LEN_MASK = 1U;

#define _mm_add_px _mm_add_ps
#define _mm_mul_px _mm_mul_ps
#define _mm_load_px _mm_loadu_ps
#define _mm_store_px _mm_storeu_ps
#define _mm_load1_px _mm_load1_ps

template <typename T>
inline void axpy(const T* x, T* y, size_t len, const T alpha) {
A
Aurelius84 已提交
99 100 101
  unsigned int jjj, lll;
  jjj = lll = 0;

102
#ifdef PADDLE_WITH_AVX
A
Aurelius84 已提交
103 104 105 106 107 108 109 110
  lll = len & ~AVX_CUT_LEN_MASK;
  __m256x mm_alpha = _mm256_broadcast_sx(&alpha);
  for (jjj = 0; jjj < lll; jjj += AVX_STEP_SIZE) {
    _mm256_store_px(
        y + jjj,
        _mm256_add_px(_mm256_load_px(y + jjj),
                      _mm256_mul_px(mm_alpha, _mm256_load_px(x + jjj))));
  }
111 112 113 114 115 116 117
#else
  lll = len & ~SSE_CUT_LEN_MASK;
  __m128x mm_alpha = _mm_load1_px(&alpha);
  for (jjj = 0; jjj < lll; jjj += SSE_STEP_SIZE) {
    _mm_store_px(y + jjj,
                 _mm_add_px(_mm_load_px(y + jjj),
                            _mm_mul_px(mm_alpha, _mm_load_px(x + jjj))));
A
Aurelius84 已提交
118 119
  }

120
#endif
121 122 123 124 125 126

  for (; jjj < len; jjj++) {
    y[jjj] += alpha * x[jjj];
  }
}

127 128
template <typename T>
inline void axpy_noadd(const T* x, T* y, size_t len, const T alpha) {
A
Aurelius84 已提交
129 130 131
  unsigned int jjj, lll;
  jjj = lll = 0;

132
#ifdef PADDLE_WITH_AVX
A
Aurelius84 已提交
133 134 135 136 137
  lll = len & ~AVX_CUT_LEN_MASK;
  __m256x mm_alpha = _mm256_broadcast_sx(&alpha);
  for (jjj = 0; jjj < lll; jjj += AVX_STEP_SIZE) {
    _mm256_store_px(y + jjj, _mm256_mul_px(mm_alpha, _mm256_load_px(x + jjj)));
  }
138 139 140 141 142 143 144 145
#else
  lll = len & ~SSE_CUT_LEN_MASK;
  __m128x mm_alpha = _mm_load1_px(&alpha);
  for (jjj = 0; jjj < lll; jjj += SSE_STEP_SIZE) {
    _mm_store_px(y + jjj, _mm_mul_px(mm_alpha, _mm_load_px(x + jjj)));
  }

#endif
A
Aurelius84 已提交
146 147 148 149 150

  for (; jjj < len; jjj++) {
    y[jjj] = alpha * x[jjj];
  }
}
151 152 153

inline void axpy_noadd(const int8_t* x, int8_t* y, size_t len,
                       const float alpha) {
154
  PADDLE_THROW(platform::errors::Unimplemented(
155
      "int8_t input of axpy_noadd is not supported"));
156
}
A
Aurelius84 已提交
157

A
Aurelius84 已提交
158 159
}  // namespace operators
}  // namespace paddle