gru_op.h 10.3 KB
Newer Older
G
guosheng 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
guosheng 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
guosheng 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14 15 16

#pragma once

17
#include "paddle/operators/math/detail/activation_functions.h"
G
guosheng 已提交
18 19 20 21 22 23 24 25 26 27
#include "paddle/operators/math/gru_compute.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/sequence2batch.h"

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

G
guosheng 已提交
28 29 30
using LoDTensor = framework::LoDTensor;
using Tensor = framework::Tensor;

Q
QI JUN 已提交
31 32
template <typename DeviceContext, typename T>
inline void ReorderInitState(const DeviceContext& ctx,
G
guosheng 已提交
33 34
                             const framework::Tensor& src, const size_t* index,
                             framework::Tensor* dst, bool indexed_src) {
Q
QI JUN 已提交
35
  math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle;
G
guosheng 已提交
36 37 38 39
  dst->mutable_data<T>(src.dims(), ctx.GetPlace());
  row_shuffle(ctx, src, index, *dst, indexed_src);
}

Q
QI JUN 已提交
40
template <typename DeviceContext, typename T>
G
guosheng 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
class GRUKernel : public framework::OpKernel<T> {
 public:
  void BatchCompute(const framework::ExecutionContext& context) const {
    auto* input = context.Input<LoDTensor>("Input");
    auto* h0 = context.Input<Tensor>("H0");
    auto* weight = context.Input<Tensor>("Weight");
    const T* weight_data = weight->data<T>();
    auto* bias = context.Input<Tensor>("Bias");
    auto* batch_gate = context.Output<LoDTensor>("BatchGate");
    batch_gate->mutable_data<T>(context.GetPlace());
    auto* batch_reset_hidden_prev =
        context.Output<LoDTensor>("BatchResetHiddenPrev");
    batch_reset_hidden_prev->mutable_data<T>(context.GetPlace());
    auto* batch_hidden = context.Output<LoDTensor>("BatchHidden");
    batch_hidden->mutable_data<T>(context.GetPlace());
    auto* hidden = context.Output<LoDTensor>("Hidden");
    hidden->mutable_data<T>(context.GetPlace());

    context.ShareLoD("Input", "Hidden");

    auto hidden_dims = hidden->dims();

    bool is_reverse = context.Attr<bool>("is_reverse");
Q
QI JUN 已提交
64 65
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
    auto& dev_ctx = context.template device_context<DeviceContext>();
66
    to_batch(dev_ctx, *input, *batch_gate, true, is_reverse);
G
guosheng 已提交
67 68

    if (bias) {
Q
QI JUN 已提交
69
      math::RowwiseAdd<DeviceContext, T> add_bias;
70
      add_bias(dev_ctx, *batch_gate, *bias, batch_gate);
G
guosheng 已提交
71 72
    }

73
    int frame_size = hidden_dims[1];
74
    math::GRUMetaValue<T> gru_value;
G
guosheng 已提交
75 76
    gru_value.gate_weight = const_cast<T*>(weight_data);
    gru_value.state_weight =
G
guosheng 已提交
77
        const_cast<T*>(weight_data + 2 * frame_size * frame_size);
G
guosheng 已提交
78 79 80 81 82 83
    Tensor ordered_h0;
    const size_t* order = batch_gate->lod()[2].data();
    if (h0) {
      // Since the batch computing for GRU reorders the input sequences
      // according to their length. The initialized cell state also needs
      // to reorder.
Q
QI JUN 已提交
84 85 86
      ReorderInitState<DeviceContext, T>(
          context.template device_context<DeviceContext>(), *h0, order,
          &ordered_h0, true);
G
guosheng 已提交
87
      gru_value.prev_out_value = ordered_h0.data<T>();
G
guosheng 已提交
88
    } else {
G
guosheng 已提交
89
      gru_value.prev_out_value = nullptr;
G
guosheng 已提交
90
    }
G
guosheng 已提交
91 92 93 94 95 96 97 98 99 100
    auto batch_starts = batch_gate->lod()[0];
    size_t num_batch = batch_starts.size() - 1;
    for (size_t n = 0; n < num_batch; n++) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);
      int cur_batch_size = bend - bstart;

      Tensor gate_t = batch_gate->Slice(bstart, bend);
      Tensor reset_hidden_prev_t = batch_reset_hidden_prev->Slice(bstart, bend);
      Tensor hidden_t = batch_hidden->Slice(bstart, bend);
G
guosheng 已提交
101 102 103
      gru_value.output_value = hidden_t.data<T>();
      gru_value.gate_value = gate_t.data<T>();
      gru_value.reset_output_value = reset_hidden_prev_t.data<T>();
Q
QI JUN 已提交
104
      math::GRUUnitFunctor<DeviceContext, T>::compute(
105
          dev_ctx, gru_value, frame_size, cur_batch_size,
106 107 108 109
          math::detail::GetActivationType(
              context.Attr<std::string>("activation")),
          math::detail::GetActivationType(
              context.Attr<std::string>("gate_activation")));
G
guosheng 已提交
110
      gru_value.prev_out_value = gru_value.output_value;
G
guosheng 已提交
111 112
    }

Q
QI JUN 已提交
113
    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
G
guosheng 已提交
114
    batch_hidden->set_lod(batch_gate->lod());
115
    to_seq(dev_ctx, *batch_hidden, *hidden);
G
guosheng 已提交
116 117 118 119 120 121 122
  }

  void Compute(const framework::ExecutionContext& context) const override {
    BatchCompute(context);
  }
};

Q
QI JUN 已提交
123
template <typename DeviceContext, typename T>
G
guosheng 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
class GRUGradKernel : public framework::OpKernel<T> {
 public:
  void BatchCompute(const framework::ExecutionContext& context) const {
    auto* h0 = context.Input<Tensor>("H0");
    auto* weight = context.Input<Tensor>("Weight");
    const T* weight_data = weight->data<T>();
    auto* batch_gate = context.Input<LoDTensor>("BatchGate");
    auto* batch_reset_hidden_prev =
        context.Input<LoDTensor>("BatchResetHiddenPrev");
    auto* batch_hidden = context.Input<LoDTensor>("BatchHidden");
    auto* hidden = context.Input<LoDTensor>("Hidden");
    auto* hidden_grad =
        context.Input<LoDTensor>(framework::GradVarName("Hidden"));
    auto* input_grad =
        context.Output<LoDTensor>(framework::GradVarName("Input"));
    auto* h0_grad = context.Output<Tensor>(framework::GradVarName("H0"));
    auto* weight_grad =
        context.Output<Tensor>(framework::GradVarName("Weight"));
    auto* bias_grad = context.Output<Tensor>(framework::GradVarName("Bias"));

    auto gate_dims = batch_gate->dims();
    auto hidden_dims = hidden->dims();
    int frame_size = hidden_dims[1];

Q
QI JUN 已提交
148
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
G
guosheng 已提交
149 150 151 152 153
    LoDTensor batch_hidden_grad, batch_gate_grad, batch_reset_hidden_prev_grad;
    batch_hidden_grad.mutable_data<T>(hidden_dims, context.GetPlace());
    batch_gate_grad.mutable_data<T>(gate_dims, context.GetPlace());
    batch_reset_hidden_prev_grad.mutable_data<T>(hidden_dims,
                                                 context.GetPlace());
Q
QI JUN 已提交
154 155
    math::SetConstant<DeviceContext, T> zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();
156 157 158
    zero(dev_ctx, &batch_hidden_grad, static_cast<T>(0.0));
    zero(dev_ctx, &batch_gate_grad, static_cast<T>(0.0));
    zero(dev_ctx, &batch_reset_hidden_prev_grad, static_cast<T>(0.0));
G
guosheng 已提交
159

G
guosheng 已提交
160 161 162
    Tensor ordered_h0, ordered_h0_grad;
    const size_t* order = batch_gate->lod()[2].data();
    if (h0) {
Q
QI JUN 已提交
163 164
      ReorderInitState<DeviceContext, T>(dev_ctx, *h0, order, &ordered_h0,
                                         true);
G
guosheng 已提交
165 166 167
    }
    if (h0_grad) {
      ordered_h0_grad.mutable_data<T>(h0_grad->dims(), context.GetPlace());
Q
QI JUN 已提交
168 169
      zero(context.template device_context<DeviceContext>(), &ordered_h0_grad,
           static_cast<T>(0.0));
G
guosheng 已提交
170 171
    }

G
guosheng 已提交
172 173
    bool is_reverse = context.Attr<bool>("is_reverse");
    batch_hidden_grad.set_lod(batch_hidden->lod());
174
    to_batch(dev_ctx, *hidden_grad, batch_hidden_grad, false, is_reverse);
G
guosheng 已提交
175

176
    math::GRUMetaValue<T> gru_value;
G
guosheng 已提交
177 178
    gru_value.gate_weight = const_cast<T*>(weight_data);
    gru_value.state_weight =
G
guosheng 已提交
179 180
        const_cast<T*>(weight_data + 2 * frame_size * frame_size);

181
    math::GRUMetaGrad<T> gru_grad;
G
guosheng 已提交
182
    if (weight_grad) {
G
guosheng 已提交
183
      gru_grad.gate_weight_grad =
G
guosheng 已提交
184
          weight_grad->mutable_data<T>(context.GetPlace());
185
      zero(dev_ctx, weight_grad, static_cast<T>(0.0));
G
guosheng 已提交
186
      gru_grad.state_weight_grad =
G
guosheng 已提交
187 188
          weight_grad->data<T>() + 2 * frame_size * frame_size;
    } else {
G
guosheng 已提交
189 190
      gru_grad.gate_weight_grad = nullptr;
      gru_grad.state_weight_grad = nullptr;
G
guosheng 已提交
191 192 193 194 195 196 197 198 199 200
    }

    auto batch_starts = batch_hidden_grad.lod()[0];
    size_t num_batch = batch_starts.size() - 1;
    for (int n = static_cast<int>(num_batch) - 1; n >= 0; n--) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);
      int cur_batch_size = bend - bstart;

      Tensor gate_t = batch_gate->Slice(bstart, bend);
G
guosheng 已提交
201
      gru_value.gate_value = gate_t.data<T>();
G
guosheng 已提交
202
      Tensor reset_hidden_prev_t = batch_reset_hidden_prev->Slice(bstart, bend);
G
guosheng 已提交
203
      gru_value.reset_output_value = reset_hidden_prev_t.data<T>();
G
guosheng 已提交
204 205

      Tensor hidden_grad_t = batch_hidden_grad.Slice(bstart, bend);
G
guosheng 已提交
206
      gru_grad.output_grad = hidden_grad_t.data<T>();
G
guosheng 已提交
207
      Tensor gate_grad_t = batch_gate_grad.Slice(bstart, bend);
G
guosheng 已提交
208
      gru_grad.gate_grad = gate_grad_t.data<T>();
G
guosheng 已提交
209 210
      Tensor reset_hidden_prev_grad_t =
          batch_reset_hidden_prev_grad.Slice(bstart, bend);
G
guosheng 已提交
211
      gru_grad.reset_output_grad = reset_hidden_prev_grad_t.data<T>();
G
guosheng 已提交
212
      if (n == 0) {
G
guosheng 已提交
213 214
        gru_value.prev_out_value = h0 ? ordered_h0.data<T>() : nullptr;
        gru_grad.prev_out_grad =
G
guosheng 已提交
215
            h0 && h0_grad ? ordered_h0_grad.data<T>() : nullptr;
G
guosheng 已提交
216 217 218
      } else {
        int bstart_pre = static_cast<int>(batch_starts[n - 1]);
        Tensor hidden_prev_t = batch_hidden->Slice(bstart_pre, bstart);
G
guosheng 已提交
219
        gru_value.prev_out_value = hidden_prev_t.data<T>();
G
guosheng 已提交
220
        Tensor hidden_prev_grad_t = batch_hidden_grad.Slice(bstart_pre, bstart);
G
guosheng 已提交
221
        gru_grad.prev_out_grad = hidden_prev_grad_t.data<T>();
G
guosheng 已提交
222 223
      }

Q
QI JUN 已提交
224
      math::GRUUnitGradFunctor<DeviceContext, T>::compute(
225
          dev_ctx, gru_value, gru_grad, frame_size, cur_batch_size,
226 227 228 229
          math::detail::GetActivationType(
              context.Attr<std::string>("activation")),
          math::detail::GetActivationType(
              context.Attr<std::string>("gate_activation")));
G
guosheng 已提交
230 231 232
    }
    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
233
      math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
G
guosheng 已提交
234
      batch_gate_grad.set_lod(batch_gate->lod());
235
      to_seq(dev_ctx, batch_gate_grad, *input_grad);
G
guosheng 已提交
236 237 238
    }
    if (bias_grad) {
      bias_grad->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
239
      math::ColwiseSum<DeviceContext, T> col_sum;
240
      col_sum(dev_ctx, batch_gate_grad, bias_grad);
G
guosheng 已提交
241
    }
G
guosheng 已提交
242
    if (h0 && h0_grad) {
Q
QI JUN 已提交
243 244
      ReorderInitState<DeviceContext, T>(dev_ctx, ordered_h0_grad, order,
                                         h0_grad, false);
G
guosheng 已提交
245
    }
G
guosheng 已提交
246 247 248 249 250 251 252 253 254
  }

  void Compute(const framework::ExecutionContext& context) const override {
    BatchCompute(context);
  }
};

}  // namespace operators
}  // namespace paddle