pool_grad_kernel.cc 7.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/pool_grad_kernel.h"

#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/pooling.h"

namespace phi {
template <typename T, typename Context>
void Pool2dGradKernel(const Context& ctx,
                      const DenseTensor& x,
                      const DenseTensor& out,
                      const DenseTensor& dout,
27
                      const IntArray& kernel_size_t,
28 29 30 31 32 33 34 35 36 37 38 39 40
                      const std::vector<int>& strides_t,
                      const std::vector<int>& paddings_t,
                      bool ceil_mode,
                      bool exclusive,
                      const std::string& data_format,
                      const std::string& pooling_type,
                      bool global_pooling,
                      bool adaptive,
                      const std::string& padding_algorithm,
                      DenseTensor* dx) {
  using XPUType = typename XPUTypeTrait<T>::Type;

  std::vector<int> paddings(paddings_t);
41 42
  std::vector<int> kernel_size(kernel_size_t.GetData().begin(),
                               kernel_size_t.GetData().end());
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
  std::vector<int> strides(strides_t);

  PADDLE_ENFORCE_EQ(
      data_format,
      "NCHW",
      phi::errors::InvalidArgument("The Pool2d_grad XPU OP only support"
                                   "data_format is 'NCHW', but received %s",
                                   data_format));

  PADDLE_ENFORCE_EQ(
      kernel_size.size(),
      2,
      phi::errors::InvalidArgument("The Pool2d XPU OP only support 2 "
                                   "dimension pooling!, but received "
                                   "%d-dimension pool kernel size",
                                   kernel_size.size()));
  if (global_pooling) {
    for (size_t i = 0; i < kernel_size.size(); ++i) {
      paddings[i] = 0;
      kernel_size[i] = static_cast<int>(x.dims()[i + 2]);
    }
  }
  if (!dx) {
    return;
  }
  const int n = x.dims()[0];
  const int c = x.dims()[1];
  const int in_h = x.dims()[2];
  const int in_w = x.dims()[3];

  const int out_h = out.dims()[2];
  const int out_w = out.dims()[3];

  DDim data_dims;

  data_dims = slice_ddim(x.dims(), 2, x.dims().size());
  funcs::UpdatePadding(&paddings,
                       global_pooling,
                       adaptive,
                       padding_algorithm,
                       data_dims,
                       strides,
                       kernel_size);
  if (ceil_mode) {
    int in_h_ceil = (out_h - 1) * strides[0] + kernel_size[0] - 2 * paddings[0];
    int in_w_ceil = (out_w - 1) * strides[1] + kernel_size[1] - 2 * paddings[2];

    paddings[1] += (in_h_ceil - in_h);
    paddings[3] += (in_w_ceil - in_w);
  }

  ctx.template Alloc<T>(dx);
  const int* index_data = nullptr;
  int r = xpu::Error_t::SUCCESS;
  if (adaptive) {
    // floor for stride
    strides = {in_h / out_h, in_w / out_w};
    int kh = in_h - (out_h - 1) * strides[0];
    int kw = in_w - (out_w - 1) * strides[1];
    kernel_size = {kh, kw};
    paddings = {0, 0, 0, 0};
  }

  if (pooling_type == "max") {
    r = xpu::max_pool2d_grad<XPUType>(
        ctx.x_context(),
        reinterpret_cast<const XPUType*>(x.data<T>()),
        reinterpret_cast<const XPUType*>(out.data<T>()),
        index_data,
        reinterpret_cast<const XPUType*>(dout.data<T>()),
        reinterpret_cast<XPUType*>(dx->data<T>()),
        n,
        c,
        in_h,
        in_w,
        kernel_size,
        strides,
        paddings,
        true);
  } else if (pooling_type == "avg") {
    r = xpu::avg_pool2d_grad<XPUType>(
        ctx.x_context(),
        reinterpret_cast<const XPUType*>(x.data<T>()),
        reinterpret_cast<const XPUType*>(out.data<T>()),
        reinterpret_cast<const XPUType*>(dout.data<T>()),
        reinterpret_cast<XPUType*>(dx->data<T>()),
        n,
        c,
        in_h,
        in_w,
        kernel_size,
        strides,
        paddings,
        !exclusive,
        true);
  } else {
    PADDLE_THROW(phi::errors::InvalidArgument(
        "Unsupported pooling type for kunlun ", pooling_type));
  }
  PADDLE_ENFORCE_XDNN_SUCCESS(r, "pool2dgrad");
}
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

template <typename T, typename Context>
void MaxPool2dWithIndexGradKernel(const Context& ctx,
                                  const DenseTensor& x,
                                  const DenseTensor& mask,
                                  const DenseTensor& dout,
                                  const std::vector<int>& kernel_size,
                                  const std::vector<int>& strides_t,
                                  const std::vector<int>& paddings_t,
                                  bool global_pooling,
                                  bool adaptive,
                                  DenseTensor* dx) {
  using XPUType = typename XPUTypeTrait<T>::Type;

  ctx.template Alloc<T>(dx);
  auto input_grad = reinterpret_cast<XPUType*>(dx->data<T>());
  std::vector<int> ksize(kernel_size);
  std::vector<int> strides(strides_t);
  std::vector<int> paddings(paddings_t);
  const auto* index_data = mask.data<int>();

  PADDLE_ENFORCE_NOT_NULL(index_data,
                          errors::NotFound("index data should not be nullptr"));
  PADDLE_ENFORCE_EQ(
      ksize.size(),
      2,
      phi::errors::InvalidArgument("The Pool2d XPU OP only support 2 "
                                   "dimension pooling!, but received "
                                   "%d-dimension pool kernel size",
                                   ksize.size()));
  global_pooling = global_pooling || (adaptive && (ksize[0] * ksize[1] == 1));
  if (global_pooling) {
    for (size_t i = 0; i < ksize.size(); ++i) {
      paddings[i] = 0;
      ksize[i] = static_cast<int>(dx->dims()[i + 2]);
    }
  }
  const int n = dx->dims()[0];
  const int c = dx->dims()[1];
  const int in_h = dx->dims()[2];
  const int in_w = dx->dims()[3];
  auto output_grad = reinterpret_cast<const XPUType*>(dout.data<T>());

  int r = xpu::Error_t::SUCCESS;
  // pass a nullptr as input to XDNN is fine as long as index_data exists
  r = xpu::max_pool2d_grad<XPUType>(ctx.x_context(),
                                    /*input*/ nullptr,
                                    /*output*/ nullptr,
                                    index_data,
                                    output_grad,
                                    input_grad,
                                    n,
                                    c,
                                    in_h,
                                    in_w,
                                    ksize,
                                    strides,
                                    paddings,
                                    true);
  PADDLE_ENFORCE_XDNN_SUCCESS(r, "max_pool2d_with_index_grad");
}
205 206 207 208 209 210 211 212
}  // namespace phi

PD_REGISTER_KERNEL(pool2d_grad,
                   XPU,
                   ALL_LAYOUT,
                   phi::Pool2dGradKernel,
                   float,
                   phi::dtype::float16) {}
213 214 215 216 217 218
PD_REGISTER_KERNEL(max_pool2d_with_index_grad,
                   XPU,
                   ALL_LAYOUT,
                   phi::MaxPool2dWithIndexGradKernel,
                   float,
                   phi::dtype::float16) {}