test_lambv2_op.py 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17
import numpy as np
18

19
import paddle
20 21
import paddle.fluid as fluid
import paddle.fluid.layers as layers
22 23
from paddle.fluid import core
from paddle.fluid.dygraph.base import switch_to_static_graph
24 25 26 27 28 29 30


class LAMBOptimizer(paddle.optimizer.Lamb):
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, fluid.framework.Block)
        block.program._use_lamb = True

31 32 33
        m = moment1 = self._get_accumulator(
            self._moment1_acc_str, param_and_grad[0]
        )
34
        v = self._get_accumulator(self._moment2_acc_str, param_and_grad[0])
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
        beta_1_pow_acc = self._get_accumulator(
            self._beta1_pow_acc_str, param_and_grad[0]
        )
        beta_2_pow_acc = self._get_accumulator(
            self._beta2_pow_acc_str, param_and_grad[0]
        )

        beta_1 = layers.fill_constant(
            dtype='float32', shape=[1], value=self._beta1, name='lamb_beta_1'
        )
        beta_2 = layers.fill_constant(
            dtype='float32', shape=[1], value=self._beta2, name='lamb_beta_2'
        )
        epsilon = layers.fill_constant(
            dtype='float32', shape=[1], value=self._epsilon, name='epsilon'
        )
51 52 53 54

        one = paddle.ones(shape=[1]).astype('float32')
        zero = paddle.zeros(shape=[1]).astype('float32')

55
        next_m = paddle.multiply(m, beta_1) + paddle.multiply(
56 57
            param_and_grad[1], one - beta_1
        )
58
        next_v = paddle.multiply(v, beta_2) + paddle.multiply(
59 60
            paddle.pow(param_and_grad[1], 2), one - beta_2
        )
61 62 63 64 65 66 67 68 69

        beta1_correction = one - beta_1_pow_acc
        beta2_correction = one - beta_2_pow_acc

        next_m_unbiased = next_m / beta1_correction
        next_v_unbiased = next_v / beta2_correction

        update = next_m_unbiased / (paddle.sqrt(next_v_unbiased) + epsilon)

70 71 72 73
        if (
            self._exclude_from_weight_decay_fn is not None
            and self._exclude_from_weight_decay_fn(param_and_grad[0])
        ):
74 75 76 77 78 79 80 81 82 83
            self._lamb_weight_decay = 0.0
        update += self._lamb_weight_decay * param_and_grad[0]

        w_norm = paddle.norm(param_and_grad[0], p=2)
        g_norm = paddle.norm(update, p=2)

        learning_rate = self._create_param_lr(param_and_grad)

        ratio = paddle.where(
            paddle.greater_than(w_norm, zero),
84 85 86 87 88
            paddle.where(
                paddle.greater_than(g_norm, zero), (w_norm / g_norm), one
            ),
            one,
        )
89 90 91 92 93 94 95 96 97 98 99
        update_with_lr = ratio * learning_rate * update
        next_param = param_and_grad[0] - update_with_lr

        beta_1_pow_acc *= beta_1
        beta_2_pow_acc *= beta_2

        paddle.assign(next_m, m)
        paddle.assign(next_v, v)
        paddle.assign(next_param, param_and_grad[0])

        return None
100 101 102 103


class TestLambOpV2(unittest.TestCase):
    def test_lamb_op(self):
104 105 106 107 108
        shape = [2, 4, 8, 8]
        data = paddle.to_tensor(np.random.random(size=shape).astype("float32"))
        conv = paddle.nn.Conv2D(4, 6, (3, 3))
        data = conv(data)
        loss = paddle.mean(data)
109 110 111
        opt = paddle.optimizer.Lamb(
            learning_rate=1e-5, epsilon=1e-8, parameters=conv.parameters()
        )
112 113 114 115 116 117 118 119
        loss.backward()
        opt.minimize(loss)

        assert loss.numpy() is not None


class TestLambOpWithCombinedOp(unittest.TestCase):
    def test_lamb_op_with_multi_steps(self):
120
        paddle.enable_static()
121 122 123 124 125 126 127 128 129

        def _build_static_model(main, startup, seed=100):
            with fluid.program_guard(main, startup):
                main.random_seed = seed
                startup.random_seed = seed
                x = fluid.layers.data(name='X', shape=[13], dtype='float32')
                y = fluid.layers.data(name='Y', shape=[1], dtype='float32')
                prediction = fluid.layers.fc(input=x, size=1, act=None)
                loss = fluid.layers.square_error_cost(input=prediction, label=y)
130
                avg_loss = paddle.mean(loss)
131 132
            return avg_loss

133
        place = fluid.CPUPlace()
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
        num_steps = 10

        for i in range(num_steps):
            feed_x = np.random.random(size=(10, 13)).astype('float32')
            feed_y = np.random.random(size=(10, 1)).astype('float32')

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program, startup_program):
                avg_loss = _build_static_model(main_program, startup_program)
                lamb_kernel = paddle.optimizer.Lamb(learning_rate=0.2)
                lamb_kernel.minimize(avg_loss)

            executor = fluid.Executor(place)
            executor.run(startup_program)
149 150 151 152 153
            output = executor.run(
                program=main_program,
                feed={'X': feed_x, 'Y': feed_y},
                fetch_list=[avg_loss.name],
            )
154 155 156 157 158 159 160 161 162 163

            main = fluid.Program()
            startup = fluid.Program()
            with fluid.program_guard(main, startup):
                loss = _build_static_model(main, startup)
                lamb = LAMBOptimizer(learning_rate=0.2)
                lamb.minimize(loss)

            exe = fluid.Executor(place)
            exe.run(startup)
164 165 166 167 168
            out = exe.run(
                program=main,
                feed={'X': feed_x, 'Y': feed_y},
                fetch_list=[loss.name],
            )
169

170
            np.testing.assert_allclose(out, output, rtol=1e-05)
171 172


173 174 175 176 177 178 179 180
class TestLambOpV2Group(TestLambOpV2):
    def test_lamb_op(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear_1 = paddle.nn.Linear(13, 5)
        linear_2 = paddle.nn.Linear(5, 3)
        # This can be any optimizer supported by dygraph.
181 182 183 184 185 186 187 188 189 190 191 192 193
        adam = paddle.optimizer.Lamb(
            learning_rate=0.01,
            parameters=[
                {'params': linear_1.parameters()},
                {
                    'params': linear_2.parameters(),
                    'lamb_weight_decay': 0.001,
                    'beta1': 0.9,
                    'beta2': 0.99,
                },
            ],
            lamb_weight_decay=0.01,
        )
194 195 196 197 198 199 200
        out = linear_1(a)
        out = linear_2(out)
        out.backward()
        adam.step()
        adam.clear_gradients()


201 202 203 204 205 206 207
class TestLambOpMultiPrecision(unittest.TestCase):
    def check_main(self, x_np, place, multi_precision=False, seed=10, n=10):
        main_prog = paddle.static.Program()
        startup_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, startup_prog):
            paddle.seed(seed)
            with paddle.static.amp.fp16_guard():
208 209 210
                x = paddle.static.data(
                    name='x', shape=[None, 10], dtype='float32'
                )
211 212 213 214
                linear = paddle.nn.Linear(10, 2)
                hidden = linear(x)
                loss = paddle.mean(hidden)

215 216
            original_optimizer = paddle.optimizer.Lamb(learning_rate=1e-3)
            original_optimizer._multi_precision = multi_precision
217
            if multi_precision:
218 219 220
                optimizer = paddle.static.amp.decorate(
                    original_optimizer, use_pure_fp16=True, use_fp16_guard=True
                )
221 222
            else:
                optimizer = original_optimizer
223 224 225 226 227 228 229 230 231
            optimizer.minimize(loss)

        weight, bias = linear.weight, linear.bias
        exe = paddle.static.Executor(place)
        scope = paddle.static.Scope()
        x = main_prog.global_block().var(x.name)
        if x.dtype == core.VarDesc.VarType.FP16:
            x_np = x_np.astype(np.float16)

232 233 234 235 236 237 238 239 240
        def get_parameter(var):
            name = var if isinstance(var, (str, bytes)) else var.name
            params = original_optimizer._get_parameter(name, scope)
            assert isinstance(params, (list, tuple))
            params = list(params)
            assert len(params) == 2
            if multi_precision:
                params[0] = np.array(params[0])
                params[1] = np.array(params[1])
241 242 243
                np.testing.assert_array_equal(
                    params[0], params[1].astype(np.float16)
                )
244 245
                return params[0].astype(np.float32)
            else:
246 247
                self.assertIsNotNone(params[0])
                self.assertIsNone(params[1])
248 249 250
                params[0] = np.array(params[0])
                return params[0]

251 252 253 254
        with paddle.static.scope_guard(scope):
            exe.run(startup_prog)
            if multi_precision:
                optimizer.amp_init(place)
255

256 257 258
            weight_np, bias_np = None, None
            for i in range(n):
                feed_dict = {x.name: x_np}
259 260 261
                weight_np, bias_np = exe.run(
                    main_prog, feed=feed_dict, fetch_list=[weight, bias]
                )
262 263
                weight_np = weight_np.astype('float32')
                bias_np = bias_np.astype('float32')
264 265
                np.testing.assert_array_equal(weight_np, get_parameter(weight))
                np.testing.assert_array_equal(bias_np, get_parameter(bias))
266
            return weight_np, bias_np
267 268 269 270 271 272 273 274 275 276 277 278 279 280

    @switch_to_static_graph
    def test_main(self):
        if not paddle.is_compiled_with_cuda():
            return

        place = paddle.CUDAPlace(0)
        x_np = np.random.random(size=[5, 10]).astype('float32')
        weight_1, bias_1 = self.check_main(x_np, place, multi_precision=False)
        weight_2, bias_2 = self.check_main(x_np, place, multi_precision=True)
        self.assertTrue(np.all(np.abs(weight_1 - weight_2) < 1e-3))
        self.assertTrue(np.all(np.abs(bias_1 - bias_2) < 1e-7))


281 282
if __name__ == "__main__":
    unittest.main()