data.html 47.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
11
  <title>Datasets &mdash; PaddlePaddle  documentation</title>
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="Index"
              href="../../genindex.html"/>
        <link rel="search" title="Search" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../../index.html"/>
        <link rel="up" title="API" href="../index_en.html"/>
37 38
        <link rel="next" title="Training and Inference" href="run_logic.html"/>
        <link rel="prev" title="Parameter Attribute" href="config/attr.html"/> 
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
68
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Folk me on Github</a>
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a>Home</a></li>
          <li><a>Get Started</a></li>
          <li class="active"><a>Documentation</a></li>
          <li><a>About Us</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../tutorials/index_en.html">TUTORIALS</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_en.html">HOW TO</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="../index_en.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../about/index_en.html">ABOUT</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/build_and_install/index_en.html">Install and Build</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/docker_install_en.html">PaddlePaddle in Docker Containers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/ubuntu_install_en.html">Debian Package installation guide</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/build_from_source_en.html">Installing from Sources</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/basic_usage/index_en.html">Simple Linear Regression</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../tutorials/index_en.html">TUTORIALS</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../tutorials/quick_start/index_en.html">Quick Start</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../tutorials/rec/ml_regression_en.html">MovieLens Regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../tutorials/image_classification/index_en.html">Image Classification</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../tutorials/sentiment_analysis/index_en.html">Sentiment Analysis</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../tutorials/semantic_role_labeling/index_en.html">Semantic Role Labeling</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../tutorials/text_generation/index_en.html">Text Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../tutorials/gan/index_en.html">Image Auto-Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../tutorials/imagenet_model/resnet_model_en.html">ImageNet: ResNet</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../tutorials/embedding_model/index_en.html">Embedding: Chinese Word</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_en.html">HOW TO</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cluster/cluster_train_en.html">Run Distributed Training</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_en.html">Paddle On Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_aws_en.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/new_layer_en.html">Write New Layers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/contribute_to_paddle_en.html">Contribute Code</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/deep_model/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/rnn_config_en.html">RNN Configuration</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1 current"><a class="reference internal" href="../index_en.html">API</a><ul class="current">
158 159 160 161 162 163 164 165 166 167 168
<li class="toctree-l2"><a class="reference internal" href="model_configs.html">Model Configuration</a><ul>
<li class="toctree-l3"><a class="reference internal" href="config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2 current"><a class="current reference internal" href="#">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="run_logic.html">Training and Inference</a></li>
169 170 171 172 173 174 175 176 177
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../about/index_en.html">ABOUT</a></li>
</ul>

        
    </nav>
    
    <nav class="local-toc"><ul>
178 179 180 181
<li><a class="reference internal" href="#">Datasets</a><ul>
<li><a class="reference internal" href="#datatypes">DataTypes</a></li>
<li><a class="reference internal" href="#datafeeder">DataFeeder</a></li>
<li><a class="reference internal" href="#reader">Reader</a><ul>
182 183 184
<li><a class="reference internal" href="#data-reader-interface">Data Reader Interface</a></li>
</ul>
</li>
185
<li><a class="reference internal" href="#minibatch">minibatch</a></li>
186
<li><a class="reference internal" href="#dataset">Dataset</a><ul>
187 188
<li><a class="reference internal" href="#mnist">mnist</a></li>
<li><a class="reference internal" href="#cifar">cifar</a></li>
189
<li><a class="reference internal" href="#conll05">conll05</a></li>
190 191 192 193 194 195
<li><a class="reference internal" href="#imdb">imdb</a></li>
<li><a class="reference internal" href="#imikolov">imikolov</a></li>
<li><a class="reference internal" href="#movielens">movielens</a></li>
<li><a class="reference internal" href="#sentiment">sentiment</a></li>
<li><a class="reference internal" href="#uci-housing">uci_housing</a></li>
<li><a class="reference internal" href="#wmt14">wmt14</a></li>
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
</ul>
</li>
</ul>
</li>
</ul>
</nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
        <li><a href="../index_en.html">API</a> > </li>
      
220
    <li>Datasets</li>
221 222 223 224 225 226 227 228
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
229 230 231 232
  <div class="section" id="datasets">
<h1>Datasets<a class="headerlink" href="#datasets" title="Permalink to this headline"></a></h1>
<div class="section" id="datatypes">
<h2>DataTypes<a class="headerlink" href="#datatypes" title="Permalink to this headline"></a></h2>
233
<dl class="function">
234 235
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">dense_vector</code><span class="sig-paren">(</span><em>dim</em>, <em>seq_type=0</em><span class="sig-paren">)</span></dt>
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
<dd><p>Dense Vector. It means the input feature is dense float vector. For example,
if the input is an image with 28*28 pixels, the input of Paddle neural
network should be a dense vector with dimension 784.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>dim</strong> (<em>int</em>) &#8211; dimension of this vector.</li>
<li><strong>seq_type</strong> (<em>int</em>) &#8211; sequence type of input.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">An input type object.</p>
</td>
</tr>
252
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">InputType</p>
253 254 255 256 257 258 259
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
260 261
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">dense_vector_sequence</code><span class="sig-paren">(</span><em>dim</em><span class="sig-paren">)</span></dt>
262 263 264 265 266 267 268 269 270
<dd><p>Data type of a sequence of dense vector.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>dim</strong> (<em>int</em>) &#8211; dimension of dense vector.</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">An input type object</td>
</tr>
271
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body">InputType</td>
272 273 274 275 276 277
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
278 279
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">integer_value</code><span class="sig-paren">(</span><em>value_range</em>, <em>seq_type=0</em><span class="sig-paren">)</span></dt>
280 281 282 283 284 285 286 287 288 289 290 291 292 293
<dd><p>Data type of integer.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>seq_type</strong> (<em>int</em>) &#8211; sequence type of this input.</li>
<li><strong>value_range</strong> (<em>int</em>) &#8211; range of this integer.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">An input type object</p>
</td>
</tr>
294
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">InputType</p>
295 296 297 298 299 300 301
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
302 303
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">integer_value_sequence</code><span class="sig-paren">(</span><em>value_range</em><span class="sig-paren">)</span></dt>
304 305 306 307 308 309 310 311 312 313 314 315
<dd><p>Data type of a sequence of integer.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>value_range</strong> (<em>int</em>) &#8211; range of each element.</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
316 317
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">sparse_binary_vector</code><span class="sig-paren">(</span><em>dim</em>, <em>seq_type=0</em><span class="sig-paren">)</span></dt>
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
<dd><p>Sparse binary vector. It means the input feature is a sparse vector and the
every element in this vector is either zero or one.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>dim</strong> (<em>int</em>) &#8211; dimension of this vector.</li>
<li><strong>seq_type</strong> (<em>int</em>) &#8211; sequence type of this input.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">An input type object.</p>
</td>
</tr>
333
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">InputType</p>
334 335 336 337 338 339 340
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
341 342
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">sparse_binary_vector_sequence</code><span class="sig-paren">(</span><em>dim</em><span class="sig-paren">)</span></dt>
343 344 345 346 347 348 349 350 351 352 353 354
<dd><dl class="docutils">
<dt>Data type of a sequence of sparse vector, which every element is either zero</dt>
<dd>or one.</dd>
</dl>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>dim</strong> (<em>int</em>) &#8211; dimension of sparse vector.</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">An input type object</td>
</tr>
355
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body">InputType</td>
356 357 358 359 360 361
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
362 363
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">sparse_non_value_slot</code><span class="sig-paren">(</span><em>dim</em>, <em>seq_type=0</em><span class="sig-paren">)</span></dt>
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
<dd><p>Sparse binary vector. It means the input feature is a sparse vector and the
every element in this vector is either zero or one.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>dim</strong> (<em>int</em>) &#8211; dimension of this vector.</li>
<li><strong>seq_type</strong> (<em>int</em>) &#8211; sequence type of this input.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">An input type object.</p>
</td>
</tr>
379
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">InputType</p>
380 381 382 383 384 385 386
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
387 388
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">sparse_value_slot</code><span class="sig-paren">(</span><em>dim</em>, <em>seq_type=0</em><span class="sig-paren">)</span></dt>
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
<dd><p>Sparse vector. It means the input feature is a sparse vector. Most of the
elements in this vector are zero, others could be any float value.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>dim</strong> (<em>int</em>) &#8211; dimension of this vector.</li>
<li><strong>seq_type</strong> (<em>int</em>) &#8211; sequence type of this input.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">An input type object.</p>
</td>
</tr>
404
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">InputType</p>
405 406 407 408 409 410 411
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
412 413
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">sparse_vector</code><span class="sig-paren">(</span><em>dim</em>, <em>seq_type=0</em><span class="sig-paren">)</span></dt>
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
<dd><p>Sparse vector. It means the input feature is a sparse vector. Most of the
elements in this vector are zero, others could be any float value.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>dim</strong> (<em>int</em>) &#8211; dimension of this vector.</li>
<li><strong>seq_type</strong> (<em>int</em>) &#8211; sequence type of this input.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">An input type object.</p>
</td>
</tr>
429
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">InputType</p>
430 431 432 433 434 435 436
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
437 438
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">sparse_vector_sequence</code><span class="sig-paren">(</span><em>dim</em><span class="sig-paren">)</span></dt>
439 440 441 442 443 444 445 446 447 448
<dd><p>Data type of a sequence of sparse vector, which most elements are zero,
others could be any float value.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>dim</strong> (<em>int</em>) &#8211; dimension of sparse vector.</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">An input type object</td>
</tr>
449
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body">InputType</td>
450 451 452 453 454 455
</tr>
</tbody>
</table>
</dd></dl>

<dl class="class">
456 457
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.data_type.</code><code class="descname">InputType</code><span class="sig-paren">(</span><em>dim</em>, <em>seq_type</em>, <em>tp</em><span class="sig-paren">)</span></dt>
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
<dd><p>InputType is the base class for paddle input types.</p>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">this is a base class, and should never be used by user.</p>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>dim</strong> (<em>int</em>) &#8211; dimension of input. If the input is an integer, it means the
value range. Otherwise, it means the size of layer.</li>
<li><strong>seq_type</strong> (<em>int</em>) &#8211; sequence type of input. 0 means it is not a sequence. 1
means it is a variable length sequence. 2 means it is a
nested sequence.</li>
<li><strong>type</strong> (<em>int</em>) &#8211; data type of input.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
482 483
<div class="section" id="datafeeder">
<h2>DataFeeder<a class="headerlink" href="#datafeeder" title="Permalink to this headline"></a></h2>
484
<dl class="class">
485 486
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.data_feeder.</code><code class="descname">DataFeeder</code><span class="sig-paren">(</span><em>data_types</em>, <em>feeding=None</em><span class="sig-paren">)</span></dt>
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
<dd><p>DataFeeder converts the data returned by paddle.reader into a data structure
of Arguments which is defined in the API. The paddle.reader usually returns
a list of mini-batch data entries. Each data entry in the list is one sample.
Each sample is a list or a tuple with one feature or multiple features.
DataFeeder converts this mini-batch data entries into Arguments in order
to feed it to C++ interface.</p>
<p>The example usage:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data_types</span> <span class="o">=</span> <span class="p">[(</span><span class="s1">&#39;image&#39;</span><span class="p">,</span> <span class="n">paddle</span><span class="o">.</span><span class="n">data_type</span><span class="o">.</span><span class="n">dense_vector</span><span class="p">(</span><span class="mi">784</span><span class="p">)),</span>
              <span class="p">(</span><span class="s1">&#39;label&#39;</span><span class="p">,</span> <span class="n">paddle</span><span class="o">.</span><span class="n">data_type</span><span class="o">.</span><span class="n">integer_value</span><span class="p">(</span><span class="mi">10</span><span class="p">))]</span>
<span class="n">reader_dict</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;image&#39;</span><span class="p">:</span><span class="mi">0</span><span class="p">,</span> <span class="s1">&#39;label&#39;</span><span class="p">:</span><span class="mi">1</span><span class="p">}</span>
<span class="n">feeder</span> <span class="o">=</span> <span class="n">DataFeeder</span><span class="p">(</span><span class="n">data_types</span><span class="o">=</span><span class="n">data_types</span><span class="p">,</span> <span class="n">reader_dict</span><span class="o">=</span><span class="n">reader_dict</span><span class="p">)</span>
<span class="n">minibatch_data</span> <span class="o">=</span> <span class="p">[</span>
                   <span class="p">(</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span><span class="mf">2.0</span><span class="p">,</span><span class="mf">3.0</span><span class="p">,</span><span class="mf">4.0</span><span class="p">],</span> <span class="mi">5</span><span class="p">,</span> <span class="p">[</span><span class="mi">6</span><span class="p">,</span><span class="mi">7</span><span class="p">,</span><span class="mi">8</span><span class="p">]</span> <span class="p">),</span>  <span class="c1"># first sample</span>
                   <span class="p">(</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span><span class="mf">2.0</span><span class="p">,</span><span class="mf">3.0</span><span class="p">,</span><span class="mf">4.0</span><span class="p">],</span> <span class="mi">5</span><span class="p">,</span> <span class="p">[</span><span class="mi">6</span><span class="p">,</span><span class="mi">7</span><span class="p">,</span><span class="mi">8</span><span class="p">]</span> <span class="p">)</span>   <span class="c1"># second sample</span>
                 <span class="p">]</span>
<span class="c1"># or minibatch_data = [</span>
<span class="c1">#                       [ [1.0,2.0,3.0,4.0], 5, [6,7,8] ],  # first sample</span>
<span class="c1">#                       [ [1.0,2.0,3.0,4.0], 5, [6,7,8] ]   # second sample</span>
<span class="c1">#                     ]</span>
<span class="n">arg</span> <span class="o">=</span> <span class="n">feeder</span><span class="p">(</span><span class="n">minibatch_data</span><span class="p">)</span>
</pre></div>
</div>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">This module is for internal use only. Users should use the <cite>reader</cite>
interface.</p>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>data_types</strong> (<em>list</em>) &#8211; A list to specify data name and type. Each item is
a tuple of (data_name, data_type).</li>
521
<li><strong>reader_dict</strong> &#8211; A dictionary to specify the position of each data
522 523 524 525 526 527 528
in the input data.</li>
</ul>
</td>
</tr>
</tbody>
</table>
<dl class="method">
529 530
<dt>
<code class="descname">convert</code><span class="sig-paren">(</span><em>dat</em>, <em>argument=None</em><span class="sig-paren">)</span></dt>
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
<dd><table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>dat</strong> (<em>list</em>) &#8211; A list of mini-batch data. Each sample is a list or tuple
one feature or multiple features.</li>
<li><strong>argument</strong> (<em>py_paddle.swig_paddle.Arguments</em>) &#8211; An Arguments object contains this mini-batch data with
one or multiple features. The Arguments definition is
in the API.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</dd></dl>

</div>
551 552
<div class="section" id="reader">
<h2>Reader<a class="headerlink" href="#reader" title="Permalink to this headline"></a></h2>
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
<p>At training and testing time, PaddlePaddle programs need to read data. To ease
the users&#8217; work to write data reading code, we define that</p>
<ul class="simple">
<li>A <em>reader</em> is a function that reads data (from file, network, random number
generator, etc) and yields data items.</li>
<li>A <em>reader creator</em> is a function that returns a reader function.</li>
<li>A <em>reader decorator</em> is a function, which accepts one or more readers, and
returns a reader.</li>
<li>A <em>batch reader</em> is a function that reads data (from <em>reader</em>, file, network,
random number generator, etc) and yields a batch of data items.</li>
</ul>
<div class="section" id="data-reader-interface">
<h3>Data Reader Interface<a class="headerlink" href="#data-reader-interface" title="Permalink to this headline"></a></h3>
<p>Indeed, <em>data reader</em> doesn&#8217;t have to be a function that reads and yields data
items. It can be any function with no parameter that creates a iterable
(anything can be used in <code class="code docutils literal"><span class="pre">for</span> <span class="pre">x</span> <span class="pre">in</span> <span class="pre">iterable</span></code>):</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">iterable</span> <span class="o">=</span> <span class="n">data_reader</span><span class="p">()</span>
</pre></div>
</div>
<p>Element produced from the iterable should be a <strong>single</strong> entry of data,
<strong>not</strong> a mini batch. That entry of data could be a single item, or a tuple of
items.
Item should be of <a class="reference external" href="http://www.paddlepaddle.org/doc/ui/data_provider/pydataprovider2.html?highlight=dense_vector#input-types">supported type</a> (e.g., numpy 1d
array of float32, int, list of int)</p>
<p>An example implementation for single item data reader creator:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">reader_creator_random_image</span><span class="p">(</span><span class="n">width</span><span class="p">,</span> <span class="n">height</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">reader</span><span class="p">():</span>
        <span class="k">while</span> <span class="bp">True</span><span class="p">:</span>
            <span class="k">yield</span> <span class="n">numpy</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">width</span><span class="o">*</span><span class="n">height</span><span class="p">)</span>
<span class="k">return</span> <span class="n">reader</span>
</pre></div>
</div>
<p>An example implementation for multiple item data reader creator:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">reader_creator_random_image_and_label</span><span class="p">(</span><span class="n">width</span><span class="p">,</span> <span class="n">height</span><span class="p">,</span> <span class="n">label</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">reader</span><span class="p">():</span>
        <span class="k">while</span> <span class="bp">True</span><span class="p">:</span>
            <span class="k">yield</span> <span class="n">numpy</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">width</span><span class="o">*</span><span class="n">height</span><span class="p">),</span> <span class="n">label</span>
<span class="k">return</span> <span class="n">reader</span>
</pre></div>
</div>
<p>TODO(yuyang18): Should we add whole design doc here?</p>
<dl class="function">
595 596
<dt>
<code class="descclassname">paddle.v2.reader.</code><code class="descname">map_readers</code><span class="sig-paren">(</span><em>func</em>, <em>*readers</em><span class="sig-paren">)</span></dt>
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
<dd><p>Creates a data reader that outputs return value of function using
output of each data readers as arguments.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>func</strong> &#8211; function to use. The type of func should be (Sample) =&gt; Sample</li>
<li><strong>readers</strong> &#8211; readers whose outputs will be used as arguments of func.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Type:</th><td class="field-body"><p class="first">callable</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">the created data reader.</p>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">callable</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
623 624
<dt>
<code class="descclassname">paddle.v2.reader.</code><code class="descname">buffered</code><span class="sig-paren">(</span><em>reader</em>, <em>size</em><span class="sig-paren">)</span></dt>
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
<dd><p>Creates a buffered data reader.</p>
<p>The buffered data reader will read and save data entries into a
buffer. Reading from the buffered data reader will proceed as long
as the buffer is not empty.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>reader</strong> (<em>callable</em>) &#8211; the data reader to read from.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; max buffer size.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">the buffered data reader.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
647 648
<dt>
<code class="descclassname">paddle.v2.reader.</code><code class="descname">compose</code><span class="sig-paren">(</span><em>*readers</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
<dd><p>Creates a data reader whose output is the combination of input readers.</p>
<p>If input readers output following data entries:
(1, 2)    3    (4, 5)
The composed reader will output:
(1, 2, 3, 4, 5)</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>readers</strong> &#8211; readers that will be composed together.</li>
<li><strong>check_alignment</strong> (<em>bool</em>) &#8211; if True, will check if input readers are aligned
correctly. If False, will not check alignment and trailing outputs
will be discarded. Defaults to True.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">the new data reader.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Raises:</th><td class="field-body"><p class="first last"><strong>ComposeNotAligned</strong> &#8211; outputs of readers are not aligned.
Will not raise when check_alignment is set to False.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
678 679
<dt>
<code class="descclassname">paddle.v2.reader.</code><code class="descname">chain</code><span class="sig-paren">(</span><em>*readers</em><span class="sig-paren">)</span></dt>
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
<dd><p>Creates a data reader whose output is the outputs of input data
readers chained together.</p>
<p>If input readers output following data entries:
[0, 0, 0]
[1, 1, 1]
[2, 2, 2]
The chained reader will output:
[0, 0, 0, 1, 1, 1, 2, 2, 2]</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>readers</strong> &#8211; input readers.</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">the new data reader.</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
703 704
<dt>
<code class="descclassname">paddle.v2.reader.</code><code class="descname">shuffle</code><span class="sig-paren">(</span><em>reader</em>, <em>buf_size</em><span class="sig-paren">)</span></dt>
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
<dd><p>Creates a data reader whose data output is shuffled.</p>
<p>Output from the iterator that created by original reader will be
buffered into shuffle buffer, and then shuffled. The size of shuffle buffer
is determined by argument buf_size.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>reader</strong> (<em>callable</em>) &#8211; the original reader whose output will be shuffled.</li>
<li><strong>buf_size</strong> (<em>int</em>) &#8211; shuffle buffer size.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">the new reader whose output is shuffled.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">callable</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
730 731
<dt>
<code class="descclassname">paddle.v2.reader.</code><code class="descname">firstn</code><span class="sig-paren">(</span><em>reader</em>, <em>n</em><span class="sig-paren">)</span></dt>
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
<dd><p>Limit the max number of samples that reader could return.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>reader</strong> (<em>callable</em>) &#8211; the data reader to read from.</li>
<li><strong>n</strong> (<em>int</em>) &#8211; the max number of samples that return.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">the decorated reader.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">callable</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
754
<p>Creator package contains some simple reader creator, which could be used in user
755 756
program.</p>
<dl class="function">
757 758
<dt>
<code class="descclassname">paddle.v2.reader.creator.</code><code class="descname">np_array</code><span class="sig-paren">(</span><em>x</em><span class="sig-paren">)</span></dt>
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
<dd><p>Creates a reader that yields elements of x, if it is a
numpy vector. Or rows of x, if it is a numpy matrix.
Or any sub-hyperplane indexed by the highest dimension.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>x</strong> &#8211; the numpy array to create reader from.</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">data reader created from x.</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
775 776
<dt>
<code class="descclassname">paddle.v2.reader.creator.</code><code class="descname">text_file</code><span class="sig-paren">(</span><em>path</em><span class="sig-paren">)</span></dt>
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
<dd><p>Creates a data reader that outputs text line by line from given text file.
Trailing new line (&#8216;\n&#8217;) of each line will be removed.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Path:</th><td class="field-body">path of the text file.</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">data reader of text file</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
792 793
<div class="section" id="minibatch">
<h2>minibatch<a class="headerlink" href="#minibatch" title="Permalink to this headline"></a></h2>
794
<dl class="function">
795 796
<dt>
<code class="descclassname">paddle.v2.minibatch.</code><code class="descname">batch</code><span class="sig-paren">(</span><em>reader</em>, <em>batch_size</em><span class="sig-paren">)</span></dt>
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
<dd><p>Create a batched reader.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>reader</strong> (<em>callable</em>) &#8211; the data reader to read from.</li>
<li><strong>batch_size</strong> (<em>int</em>) &#8211; size of each mini-batch</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">the batched reader.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">callable</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="dataset">
<h2>Dataset<a class="headerlink" href="#dataset" title="Permalink to this headline"></a></h2>
821 822 823
<p>Dataset package.</p>
<div class="section" id="mnist">
<h3>mnist<a class="headerlink" href="#mnist" title="Permalink to this headline"></a></h3>
824 825 826 827
<p>MNIST dataset.</p>
<p>This module will download dataset from <a class="reference external" href="http://yann.lecun.com/exdb/mnist/">http://yann.lecun.com/exdb/mnist/</a> and
parse train set and test set into paddle reader creators.</p>
<dl class="function">
828 829
<dt>
<code class="descclassname">paddle.v2.dataset.mnist.</code><code class="descname">train</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
<dd><p>MNIST train set creator.</p>
<p>It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">Train reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
846 847
<dt>
<code class="descclassname">paddle.v2.dataset.mnist.</code><code class="descname">test</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
<dd><p>MNIST test set cretor.</p>
<p>It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">Test reader creator.</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
864 865
<div class="section" id="cifar">
<h3>cifar<a class="headerlink" href="#cifar" title="Permalink to this headline"></a></h3>
866 867 868 869 870
<p>CIFAR dataset: <a class="reference external" href="https://www.cs.toronto.edu/~kriz/cifar.html">https://www.cs.toronto.edu/~kriz/cifar.html</a></p>
<p>TODO(yuyang18): Complete the comments.</p>
</div>
<div class="section" id="conll05">
<h3>conll05<a class="headerlink" href="#conll05" title="Permalink to this headline"></a></h3>
871 872 873
</div>
<div class="section" id="imdb">
<h3>imdb<a class="headerlink" href="#imdb" title="Permalink to this headline"></a></h3>
874 875 876
<p>IMDB dataset: <a class="reference external" href="http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz">http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz</a></p>
<p>TODO(yuyang18): Complete comments.</p>
</div>
877 878
<div class="section" id="imikolov">
<h3>imikolov<a class="headerlink" href="#imikolov" title="Permalink to this headline"></a></h3>
879 880 881
<p>imikolov&#8217;s simple dataset: <a class="reference external" href="http://www.fit.vutbr.cz/~imikolov/rnnlm/">http://www.fit.vutbr.cz/~imikolov/rnnlm/</a></p>
<p>Complete comments.</p>
</div>
882 883
<div class="section" id="movielens">
<h3>movielens<a class="headerlink" href="#movielens" title="Permalink to this headline"></a></h3>
884 885 886
<p>Movielens 1-M dataset.</p>
<p>TODO(yuyang18): Complete comments.</p>
</div>
887 888
<div class="section" id="sentiment">
<h3>sentiment<a class="headerlink" href="#sentiment" title="Permalink to this headline"></a></h3>
889 890 891
<p>The script fetch and preprocess movie_reviews data set that provided by NLTK</p>
<p>TODO(yuyang18): Complete dataset.</p>
<dl class="function">
892 893
<dt>
<code class="descclassname">paddle.v2.dataset.sentiment.</code><code class="descname">get_word_dict</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
894 895 896 897 898 899 900
<dd><p>Sorted the words by the frequency of words which occur in sample
:return:</p>
<blockquote>
<div>words_freq_sorted</div></blockquote>
</dd></dl>

<dl class="function">
901 902
<dt>
<code class="descclassname">paddle.v2.dataset.sentiment.</code><code class="descname">train</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
903 904 905 906
<dd><p>Default train set reader creator</p>
</dd></dl>

<dl class="function">
907 908
<dt>
<code class="descclassname">paddle.v2.dataset.sentiment.</code><code class="descname">test</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
909 910 911 912
<dd><p>Default test set reader creator</p>
</dd></dl>

</div>
913 914 915 916 917 918 919
<div class="section" id="uci-housing">
<h3>uci_housing<a class="headerlink" href="#uci-housing" title="Permalink to this headline"></a></h3>
<p>UCI Housing dataset.</p>
<p>TODO(yuyang18): Complete comments.</p>
</div>
<div class="section" id="wmt14">
<h3>wmt14<a class="headerlink" href="#wmt14" title="Permalink to this headline"></a></h3>
920 921 922 923 924 925 926 927 928 929 930 931 932
<p>UCI Housing dataset.</p>
<p>TODO(yuyang18): Complete comments.</p>
</div>
</div>
</div>


           </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
933
        <a href="run_logic.html" class="btn btn-neutral float-right" title="Training and Inference" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
934 935
      
      
936
        <a href="config/attr.html" class="btn btn-neutral" title="Parameter Attribute" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true
        };
    </script>
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
976
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
977 978 979 980 981 982 983 984 985 986 987 988 989
       
  

  
  
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../_static/js/paddle_doc_init.js"></script> 

</body>
990
</html>