c_allgather_op_mlu.cc 4.5 KB
Newer Older
Z
zn 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/collective/c_allgather_op.h"
16
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
Z
zn 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30

#if defined(PADDLE_WITH_CNCL)
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/mlu/cncl_helper.h"
#endif
#include "paddle/fluid/framework/convert_utils.h"

namespace paddle {
namespace operators {

template <typename T>
class CAllGatherOpMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
31 32
    auto place = ctx.GetPlace();
    auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
Z
zn 已提交
33
#if defined(PADDLE_WITH_CNCL)
34 35
    auto x = ctx.Input<phi::DenseTensor>("X");
    auto out = ctx.Output<phi::DenseTensor>("Out");
Z
zn 已提交
36 37 38 39 40

    int nranks = ctx.Attr<int>("nranks");
    int rid = ctx.Attr<int>("ring_id");
    auto comm = platform::CNCLCommContext::Instance().Get(rid, place);
    PADDLE_ENFORCE_EQ(
41 42 43 44
        nranks,
        comm->nranks(),
        platform::errors::InvalidArgument(
            "nranks: %s should equal to %s", nranks, comm->nranks()));
Z
zn 已提交
45 46 47 48 49 50

    framework::DDim out_dims = x->dims();
    out_dims[0] *= nranks;
    out->mutable_data<T>(out_dims, place);

    uint32_t send_numel = x->numel();
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    void* send_buff;
    void* recv_buff;
    phi::DenseTensor in_tensor, out_tensor;
    if (framework::TransToProtoVarType(x->dtype()) ==
        framework::proto::VarType::INT64) {
      // cast from int64 to int32 since cncl do not support int64
      in_tensor.mutable_data<int32_t>(x->dims(), place);
      out_tensor.mutable_data<int32_t>(out->dims(), place);
      MLUCnnlTensorDesc x_int64_desc(*x);
      MLUCnnlTensorDesc x_int32_desc(in_tensor);
      cnnlCastDataType_t cast_type = GetCastDataType(VT::INT64, VT::INT32);
      MLUCnnl::Cast(ctx,
                    cast_type,
                    x_int64_desc.get(),
                    GetBasePtr(x),
                    x_int32_desc.get(),
                    GetBasePtr(&in_tensor));
      send_buff = reinterpret_cast<void*>(in_tensor.data<int32_t>());
      recv_buff = reinterpret_cast<void*>(out_tensor.data<int32_t>());
    } else {
      in_tensor.ShareDataWith(*x);
      out_tensor.ShareDataWith(*out);
      send_buff = reinterpret_cast<void*>(in_tensor.data<T>());
      recv_buff = reinterpret_cast<void*>(out_tensor.data<T>());
    }
Z
zn 已提交
76 77 78 79 80 81 82

    mluStream stream = nullptr;
    if (ctx.Attr<bool>("use_calc_stream")) {
      stream = static_cast<platform::MLUDeviceContext*>(dev_ctx)->stream();
    } else {
      stream = comm->stream();
    }
83 84
    cnclDataType_t dtype = platform::ToCNCLDataType(
        framework::TransToProtoVarType(in_tensor.dtype()));
Z
zn 已提交
85

86 87
    PADDLE_ENFORCE_MLU_SUCCESS(cnclAllGather(
        send_buff, recv_buff, send_numel, dtype, comm->comm(), stream));
88 89 90 91 92 93 94 95 96 97 98 99 100
    if (framework::TransToProtoVarType(x->dtype()) ==
        framework::proto::VarType::INT64) {
      // cast back from int64 out_tensor to out
      MLUCnnlTensorDesc out_int64_desc(*out);
      MLUCnnlTensorDesc out_int32_desc(out_tensor);
      cnnlCastDataType_t cast_type = GetCastDataType(VT::INT32, VT::INT64);
      MLUCnnl::Cast(ctx,
                    cast_type,
                    out_int32_desc.get(),
                    GetBasePtr(&out_tensor),
                    out_int64_desc.get(),
                    GetBasePtr(out));
    }
Z
zn 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddlePaddle should compile with MLU."));
#endif
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

114 115
REGISTER_OP_MLU_KERNEL(c_allgather,
                       ops::CAllGatherOpMLUKernel<float>,
Z
zn 已提交
116 117 118 119
                       ops::CAllGatherOpMLUKernel<uint8_t>,
                       ops::CAllGatherOpMLUKernel<int>,
                       ops::CAllGatherOpMLUKernel<int8_t>,
                       ops::CAllGatherOpMLUKernel<int16_t>,
120
                       ops::CAllGatherOpMLUKernel<int64_t>,
Z
zn 已提交
121
                       ops::CAllGatherOpMLUKernel<plat::float16>);