strided_slice_op.cc 13.1 KB
Newer Older
W
wangchaochaohu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/strided_slice_op.h"
#include <algorithm>
#include <memory>
18
#include <string>
W
wangchaochaohu 已提交
19
#include <vector>
20
#include "paddle/fluid/operators/slice_op.h"
W
wangchaochaohu 已提交
21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class StridedSliceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

31
  void InferShape(framework::InferShapeContext *ctx) const override {
32 33
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "StridedSlice");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "StridedSlice");
W
wangchaochaohu 已提交
34 35

    auto in_dims = ctx->GetInputDim("Input");
36 37 38 39 40 41
    PADDLE_ENFORCE_LT(
        in_dims.size(), 7,
        platform::errors::InvalidArgument(
            "The dimension of StridedSlice operator's input should be less "
            "than 7, but received dimension is %d.",
            in_dims.size()));
W
wangchaochaohu 已提交
42 43 44 45
    auto starts = ctx->Attrs().Get<std::vector<int>>("starts");
    auto ends = ctx->Attrs().Get<std::vector<int>>("ends");
    auto strides = ctx->Attrs().Get<std::vector<int>>("strides");
    auto axes = ctx->Attrs().Get<std::vector<int>>("axes");
46
    auto infer_flags = ctx->Attrs().Get<std::vector<int>>("infer_flags");
47
    auto decrease_axis = ctx->Attrs().Get<std::vector<int>>("decrease_axis");
W
wangchaochaohu 已提交
48

49 50 51
    auto starts_size = starts.size();
    auto ends_size = ends.size();
    auto strides_size = strides.size();
W
wangchaochaohu 已提交
52

53 54
    if (ctx->HasInputs("StartsTensorList")) {
      auto StartsTensorList = ctx->Inputs("StartsTensorList");
55 56 57 58
      PADDLE_ENFORCE_GT(
          StartsTensorList.size(), 0,
          platform::errors::InvalidArgument(
              "StridedSlice operator's StartsTensorList is empty."));
59 60 61 62
      starts_size = StartsTensorList.size();
    }
    if (ctx->HasInputs("EndsTensorList")) {
      auto EndsTensorList = ctx->Inputs("EndsTensorList");
63 64 65 66
      PADDLE_ENFORCE_GT(
          EndsTensorList.size(), 0,
          platform::errors::InvalidArgument(
              "StridedSlice operator's EndsTensorList is empty."));
67 68 69 70
      ends_size = EndsTensorList.size();
    }
    if (ctx->HasInputs("StridesTensorList")) {
      auto StridesTensorList = ctx->Inputs("StridesTensorList");
71 72 73 74
      PADDLE_ENFORCE_GT(
          StridesTensorList.size(), 0,
          platform::errors::InvalidArgument(
              "StridedSlice operator's StridesTensorList is empty."));
75 76 77 78 79 80 81 82
      strides_size = StridesTensorList.size();
    }

    auto tensor_input = false;
    if (ctx->HasInput("EndsTensor") || ctx->HasInput("StartsTensor") ||
        ctx->HasInput("StridesTensor")) {
      tensor_input = true;
    }
W
wangchaochaohu 已提交
83
    if (!ctx->HasInput("EndsTensor")) {
84 85 86 87 88 89 90
      PADDLE_ENFORCE_EQ(
          ends_size, axes.size(),
          platform::errors::InvalidArgument(
              "The size of ends attribute in StridedSlice operator is not "
              "equal to the size of axes attribute. The ends attribute's size "
              "is %d, axes attribute's size is %d.",
              ends_size, axes.size()));
91
    }
W
wangchaochaohu 已提交
92
    if (!ctx->HasInput("StartsTensor")) {
93 94
      PADDLE_ENFORCE_EQ(
          starts_size, axes.size(),
95 96 97 98 99
          platform::errors::InvalidArgument(
              "The size of starts attribute in StridedSlice operator is not "
              "equal to the size of axes attribute. The starts attribute's "
              "size is %d, axes attribute's size is %d.",
              starts_size, axes.size()));
100
    }
W
wangchaochaohu 已提交
101
    if (!ctx->HasInput("StridesTensor")) {
102 103
      PADDLE_ENFORCE_EQ(
          strides_size, axes.size(),
104 105 106 107 108
          platform::errors::InvalidArgument(
              "The size of strides attribute in StridedSlice operator is not "
              "equal to the size of axes attribute. The strides attribute's "
              "size is %d, axes attribute's size is %d.",
              strides_size, axes.size()));
109
    }
W
wangchaochaohu 已提交
110 111
    // we need to analysis strided slice op is valid for
    // the parameter that we get from python front
112 113 114
    std::vector<int> out_dims_vector(in_dims.size(), -1);
    if (!tensor_input) {
      StridedSliceOutDims(starts, ends, strides, axes, infer_flags, in_dims,
115 116
                          decrease_axis, out_dims_vector.data(), axes.size(),
                          true);
W
wangchaochaohu 已提交
117 118
    }
    framework::DDim out_dims(framework::make_ddim(out_dims_vector));
119 120 121 122 123 124
    // generate new shape
    if (decrease_axis.size() > 0) {
      std::vector<int> new_out_shape;
      for (size_t i = 0; i < decrease_axis.size(); ++i) {
        if (ctx->IsRuntime() && infer_flags[i] != -1) {
          PADDLE_ENFORCE_EQ(out_dims[decrease_axis[i]], 1,
125 126 127 128
                            platform::errors::InvalidArgument(
                                "the size of decrease dimension should be 1, "
                                "but received %d.",
                                out_dims[decrease_axis[i]]));
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
        }
        out_dims[decrease_axis[i]] = 0;
      }

      for (int i = 0; i < out_dims.size(); ++i) {
        if (out_dims[i] != 0) {
          new_out_shape.push_back(out_dims[i]);
        }
      }
      if (new_out_shape.size() == 0) {
        new_out_shape.push_back(1);
      }

      out_dims = framework::make_ddim(new_out_shape);
    }
W
wangchaochaohu 已提交
144 145 146 147 148 149
    ctx->SetOutputDim("Out", out_dims);
    ctx->ShareLoD("Input", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
150
      const framework::ExecutionContext &ctx) const override {
151 152 153
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        ctx.Input<Tensor>("Input")->place());
W
wangchaochaohu 已提交
154
  }
155 156 157 158 159 160 161 162 163 164 165 166 167 168
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensor" || var_name == "EndsTensor" ||
        var_name == "StridesTensor") {
      return expected_kernel_type;
    }
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList" ||
        var_name == "StridesTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
W
wangchaochaohu 已提交
169 170 171 172 173 174
};

class StridedSliceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Input", "Tensor of data to extract slices from.");
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    AddOutput("Out", "Strided Sliced data tensor.");

    AddInput("StartsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of StartsTensor, StartsTensorList "
             "and attr(starts).")
        .AsDispensable();
    AddInput("EndsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of EndsTensor, EndsTensorList and "
             "attr(ends).")
        .AsDispensable();
    AddInput(
        "StridesTensor",
        "(Tensor<int32>, optional) If provided, slice will use this."
        "It has the highest priority of StridesTensor, StridesTensorList and "
        "attr(ends).")
        .AsDispensable();
    AddInput(
        "StartsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(starts).")
        .AsDuplicable()
        .AsDispensable();
    AddInput(
        "EndsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(ends).")
        .AsDuplicable()
        .AsDispensable();
    AddInput(
        "StridesTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(strides).")
        .AsDuplicable()
        .AsDispensable();
W
wangchaochaohu 已提交
214
    AddAttr<std::vector<int>>(
215
        "axes", "(list<int>) Axes that `starts` and `ends` apply to.");
W
wangchaochaohu 已提交
216
    AddAttr<std::vector<int>>(
217 218
        "starts", "(list<int>) Start indices for the strided slice start.")
        .SetDefault({});
W
wangchaochaohu 已提交
219
    AddAttr<std::vector<int>>("ends",
220 221
                              "(list<int>) End indices the tensor slice end")
        .SetDefault({});
W
wangchaochaohu 已提交
222
    AddAttr<std::vector<int>>(
223 224 225 226 227
        "strides", "(list<int> Stride step from the start to the end)")
        .SetDefault({});
    AddAttr<std::vector<int>>(
        "infer_flags", "(list<int>) Flags of inferring dims in attributes.")
        .SetDefault({});
228 229
    AddAttr<std::vector<int>>("decrease_axis", "(list<int>) decrease_axis")
        .SetDefault({});
W
wangchaochaohu 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    AddComment(R"DOC(
Strided Slice Operator.
Instead of calling this op directly most users will want to use the
NumPy-style slicing syntax.
For Example:
data = fluid.layers.fill_constant(shape=[3, 3], value=0, dtype='int64')
y = fluid.layers.strided_slice(data, [0, 1], [1,0], [2, 3], [1, 1])
)DOC");
  }
};

class StridedSliceOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

245
  void InferShape(framework::InferShapeContext *ctx) const override {
246 247 248 249 250
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input",
                   "StridedSliceGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "StridedSliceGrad");

W
wangchaochaohu 已提交
251 252 253 254 255 256 257 258
    auto x_dims = ctx->GetInputDim("Input");
    auto x_grad_name = framework::GradVarName("Input");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }

  framework::OpKernelType GetExpectedKernelType(
259
      const framework::ExecutionContext &ctx) const override {
260 261 262
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
W
wangchaochaohu 已提交
263
  }
264 265 266
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
267 268
    if (var_name == "StartsTensor" || var_name == "EndsTensor" ||
        var_name == "StridesTensor") {
269 270
      return expected_kernel_type;
    }
271 272
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList" ||
        var_name == "StridesTensorList") {
273 274 275 276 277
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
W
wangchaochaohu 已提交
278 279
};

H
hong 已提交
280 281
template <typename T>
class StridedSliceOpGradMaker : public framework::SingleGradOpMaker<T> {
W
wangchaochaohu 已提交
282
 public:
H
hong 已提交
283
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
W
wangchaochaohu 已提交
284 285

 protected:
286
  void Apply(GradOpPtr<T> bind) const override {
H
hong 已提交
287 288 289 290 291 292 293 294 295 296
    bind->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    bind->SetInput("Input", this->Input("Input"));
    bind->SetInput("StartsTensor", this->Input("StartsTensor"));
    bind->SetInput("EndsTensor", this->Input("EndsTensor"));
    bind->SetInput("StridesTensor", this->Input("StridesTensor"));
    bind->SetInput("StartsTensorList", this->Input("StartsTensorList"));
    bind->SetInput("EndsTensorList", this->Input("EndsTensorList"));
    bind->SetInput("StridesTensorList", this->Input("StridesTensorList"));
    bind->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    bind->SetAttrMap(this->Attrs());
W
wangchaochaohu 已提交
297 298 299 300
    bind->SetType("strided_slice_grad");
  }
};

Z
Zeng Jinle 已提交
301 302
DECLARE_NO_NEED_BUFFER_VARS_INFERER(StridedSliceOpGradNoNeedBufferVarsInference,
                                    "Input");
W
wangchaochaohu 已提交
303 304 305 306 307 308

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(strided_slice, ops::StridedSliceOp, ops::StridedSliceOpMaker,
H
hong 已提交
309 310
                  ops::StridedSliceOpGradMaker<paddle::framework::OpDesc>,
                  ops::StridedSliceOpGradMaker<paddle::imperative::OpBase>);
W
wangchaochaohu 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
REGISTER_OPERATOR(strided_slice_grad, ops::StridedSliceOpGrad,
                  ops::StridedSliceOpGradNoNeedBufferVarsInference);

REGISTER_OP_CPU_KERNEL(
    strided_slice,
    ops::StridedSliceKernel<paddle::platform::CPUDeviceContext, int>,
    ops::StridedSliceKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::StridedSliceKernel<paddle::platform::CPUDeviceContext, float>,
    ops::StridedSliceKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
    strided_slice_grad,
    ops::StridedSliceGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::StridedSliceGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::StridedSliceGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::StridedSliceGradKernel<paddle::platform::CPUDeviceContext, double>);