momentum_op.h 13.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
S
sidgoyal78 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
S
sneaxiy 已提交
16
#include <memory>
D
dzhwinter 已提交
17
#include <string>
Y
Yi Wang 已提交
18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
D
dzhwinter 已提交
20 21 22
#include "paddle/fluid/operators/math/algorithm.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/for_range.h"
S
sidgoyal78 已提交
23 24 25 26

namespace paddle {
namespace operators {

D
dzhwinter 已提交
27 28 29 30 31
using framework::Tensor;
using framework::SelectedRows;
struct NoNesterov;
struct UseNesterov;

32 33 34 35 36
class MomentumOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override;
};

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
class MomentumOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Param"),
                   "Input(param) of Momentum should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Grad"),
                   "Input(grad) of Momentum should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Velocity"),
                   "Input(velocity) of Momentum should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
                   "Input(LearningRate) of Momentum should not be null.");
    PADDLE_ENFORCE(
        ctx->GetInputsVarType("Param").front() ==
            framework::proto::VarType::LOD_TENSOR,
        "The input var's type should be LoDTensor, but the received is %s",
        ctx->Inputs("Param").front(), ctx->GetInputsVarType("Param").front());

    PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
                   "Output(ParamOut) of Momentum should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("VelocityOut"),
                   "Output(VelocityOut) of Momentum should not be null.");

62 63 64 65 66 67 68 69 70
    auto lr_dims = ctx->GetInputDim("LearningRate");
    PADDLE_ENFORCE_NE(framework::product(lr_dims), 0,
                      "Maybe the Input variable LearningRate has not "
                      "been initialized. You may need to confirm "
                      "if you put exe.run(startup_program) "
                      "after optimizer.minimize function.");
    PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
                      "Learning_rate should be a scalar");

71 72 73 74 75 76 77 78 79 80 81 82 83 84
    auto param_dim = ctx->GetInputDim("Param");
    if (ctx->GetInputsVarType("Grad")[0] ==
        framework::proto::VarType::LOD_TENSOR) {
      PADDLE_ENFORCE_EQ(
          param_dim, ctx->GetInputDim("Grad"),
          "Param and Grad input of MomentumOp should have the same dimension.");
      PADDLE_ENFORCE_EQ(
          param_dim, ctx->GetInputDim("Velocity"),
          "Param and Velocity of MomentumOp should have the same dimension.");
    }

    ctx->SetOutputDim("ParamOut", param_dim);
    ctx->SetOutputDim("VelocityOut", param_dim);
  }
S
sneaxiy 已提交
85

86 87
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
88 89
    auto input_data_type =
        OperatorWithKernel::IndicateVarDataType(ctx, "Param");
90 91 92 93
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

D
dzhwinter 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
template <typename T>
class CPUDenseMomentumFunctor {
 private:
  const Tensor* param;
  const Tensor* grad;
  const Tensor* velocity;
  const Tensor* learning_rate;
  const T mu;
  const T use_nesterov;
  Tensor* param_out;
  Tensor* velocity_out;

 public:
  CPUDenseMomentumFunctor(const Tensor* param, const Tensor* grad,
                          const Tensor* velocity, const Tensor* learning_rate,
                          const T mu, const bool use_nesterov,
                          Tensor* param_out, Tensor* velocity_out)
      : param(param),
        grad(grad),
        velocity(velocity),
        learning_rate(learning_rate),
        mu(mu),
        use_nesterov(use_nesterov),
        param_out(param_out),
        velocity_out(velocity_out) {}

  inline void operator()() {
    auto p_out = framework::EigenVector<T>::Flatten(*param_out);
    auto v_out = framework::EigenVector<T>::Flatten(*velocity_out);

    auto p = framework::EigenVector<T>::Flatten(*param);
    auto v = framework::EigenVector<T>::Flatten(*velocity);
    auto g = framework::EigenVector<T>::Flatten(*grad);
Z
Zhen Wang 已提交
127
    const float* lr = learning_rate->data<float>();
D
dzhwinter 已提交
128 129 130

    v_out = v * mu + g;
    if (use_nesterov) {
Z
Zhen Wang 已提交
131
      p_out = p - (g + v_out * mu) * static_cast<T>(lr[0]);
D
dzhwinter 已提交
132
    } else {
Z
Zhen Wang 已提交
133
      p_out = p - static_cast<T>(lr[0]) * v_out;
D
dzhwinter 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    }
  }
};

template <typename T, typename UpdateMethod>
class DenseMomentumFunctor;

// NOTE(dzh) for performance.
// avoid if/else in inside kernel, implement GPU UseNesterov/NoNesterov as two
// functor.
template <typename T>
class DenseMomentumFunctor<T, UseNesterov> {
 private:
  const T* p_;
  const T* g_;
  const T* v_;
Z
Zhen Wang 已提交
150
  const float* lr_;
D
dzhwinter 已提交
151 152 153 154 155 156 157
  const T mu_;
  const int64_t num_;
  T* p_out_;
  T* v_out_;

 public:
  DenseMomentumFunctor(const T* p, const T* g, const T* v,
Z
Zhen Wang 已提交
158 159
                       const float* learning_rate, const T mu,
                       const int64_t num, T* p_out, T* v_out)
D
dzhwinter 已提交
160 161 162 163 164 165 166 167 168 169 170 171
      : p_(p),
        g_(g),
        v_(v),
        lr_(learning_rate),
        mu_(mu),
        num_(num),
        p_out_(p_out),
        v_out_(v_out) {}
  inline HOSTDEVICE void operator()(size_t i) const {
    // put memory access in register
    const T p = p_[i];
    const T g = g_[i];
Z
Zhen Wang 已提交
172
    const float lr = lr_[0];
D
dzhwinter 已提交
173 174
    const T v = v_[i];
    T v_out = v * mu_ + g;
Z
Zhen Wang 已提交
175
    T p_out = p - (g + v_out * mu_) * static_cast<T>(lr);
D
dzhwinter 已提交
176 177 178 179 180 181 182 183 184 185 186 187
    // write reigster to memory
    v_out_[i] = v_out;
    p_out_[i] = p_out;
  }
};

template <typename T>
class DenseMomentumFunctor<T, NoNesterov> {
 private:
  const T* p_;
  const T* g_;
  const T* v_;
Z
Zhen Wang 已提交
188
  const float* lr_;
D
dzhwinter 已提交
189 190 191 192 193 194 195
  const T mu_;
  const int64_t num_;
  T* p_out_;
  T* v_out_;

 public:
  DenseMomentumFunctor(const T* p, const T* g, const T* v,
Z
Zhen Wang 已提交
196 197
                       const float* learning_rate, const T mu,
                       const int64_t num, T* p_out, T* v_out)
D
dzhwinter 已提交
198 199 200 201 202 203 204 205 206 207 208 209
      : p_(p),
        g_(g),
        v_(v),
        lr_(learning_rate),
        mu_(mu),
        num_(num),
        p_out_(p_out),
        v_out_(v_out) {}
  inline HOSTDEVICE void operator()(size_t i) const {
    // put memory access in register
    const T p = p_[i];
    const T g = g_[i];
Z
Zhen Wang 已提交
210
    const T lr = static_cast<T>(lr_[0]);
D
dzhwinter 已提交
211 212 213 214 215 216 217 218 219 220 221 222
    const T v = v_[i];
    T v_out = v * mu_ + g;
    T p_out = p - lr * v_out;
    // write reigster to memory
    v_out_[i] = v_out;
    p_out_[i] = p_out;
  }
};

template <typename T, typename UpdateMethod>
class SparseMomentumFunctor;

223
template <typename T>
D
dzhwinter 已提交
224 225 226 227 228
class SparseMomentumFunctor<T, UseNesterov> {
 private:
  const T* p_;
  const T* g_;
  const T* v_;
Z
Zhen Wang 已提交
229
  const float* lr_;
D
dzhwinter 已提交
230 231 232 233 234 235 236 237
  const T mu_;
  const int64_t* rows_;
  const int64_t row_numel_;
  const int64_t row_height_;
  T* p_out_;
  T* v_out_;

 public:
Z
Zhen Wang 已提交
238
  SparseMomentumFunctor(const T* p, const T* g, const T* v, const float* lr,
D
dzhwinter 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
                        const T mu, const int64_t* rows, int64_t row_numel,
                        int64_t row_height, T* p_out, T* v_out)
      : p_(p),
        g_(g),
        v_(v),
        lr_(lr),
        mu_(mu),
        rows_(rows),
        row_numel_(row_numel),
        row_height_(row_height),
        p_out_(p_out),
        v_out_(v_out) {}

  inline HOSTDEVICE void operator()(size_t i) {
    auto row_idx =
        math::BinarySearch<int64_t>(rows_, row_height_, i / row_numel_);
255 256
    T g = row_idx >= 0 ? g_[row_idx * row_numel_ + i % row_numel_]
                       : static_cast<T>(0);
D
dzhwinter 已提交
257 258
    // put memory access in register
    const T p = p_[i];
Z
Zhen Wang 已提交
259
    const float lr = lr_[0];
D
dzhwinter 已提交
260 261
    const T v = v_[i];
    T v_out = v * mu_ + g;
Z
Zhen Wang 已提交
262
    T p_out = p - (g + v_out * mu_) * static_cast<T>(lr);
D
dzhwinter 已提交
263 264 265 266 267 268 269 270 271 272 273 274
    // write reigster to memory
    v_out_[i] = v_out;
    p_out_[i] = p_out;
  }
};

template <typename T>
class SparseMomentumFunctor<T, NoNesterov> {
 private:
  const T* p_;
  const T* g_;
  const T* v_;
Z
Zhen Wang 已提交
275
  const float* lr_;
D
dzhwinter 已提交
276 277 278 279 280 281 282 283
  const T mu_;
  const int64_t* rows_;
  const int64_t row_numel_;
  const int64_t row_height_;
  T* p_out_;
  T* v_out_;

 public:
Z
Zhen Wang 已提交
284
  SparseMomentumFunctor(const T* p, const T* g, const T* v, const float* lr,
D
dzhwinter 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
                        const T mu, const int64_t* rows, int64_t row_numel,
                        int64_t row_height, T* p_out, T* v_out)
      : p_(p),
        g_(g),
        v_(v),
        lr_(lr),
        mu_(mu),
        rows_(rows),
        row_numel_(row_numel),
        row_height_(row_height),
        p_out_(p_out),
        v_out_(v_out) {}

  inline HOSTDEVICE void operator()(size_t i) {
    auto row_idx =
        math::BinarySearch<int64_t>(rows_, row_height_, i / row_numel_);
301 302
    T g = row_idx >= 0 ? g_[row_idx * row_numel_ + i % row_numel_]
                       : static_cast<T>(0);
D
dzhwinter 已提交
303 304
    // put memory access in register
    const T p = p_[i];
Z
Zhen Wang 已提交
305
    const T lr = static_cast<T>(lr_[0]);
D
dzhwinter 已提交
306 307 308 309 310 311 312 313 314 315
    const T v = v_[i];
    T v_out = v * mu_ + g;
    T p_out = p - v_out * lr;
    // write reigster to memory
    v_out_[i] = v_out;
    p_out_[i] = p_out;
  }
};

template <typename DeviceContext, typename T>
S
sidgoyal78 已提交
316 317 318
class MomentumOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
319
    T mu = static_cast<T>(ctx.Attr<float>("mu"));
320
    bool use_nesterov = ctx.Attr<bool>("use_nesterov");
S
sidgoyal78 已提交
321

322 323 324
    auto learning_rate = ctx.Input<framework::Tensor>("LearningRate");
    auto param = ctx.Input<framework::Tensor>("Param");
    auto param_out = ctx.Output<framework::Tensor>("ParamOut");
D
dzhwinter 已提交
325 326 327 328 329
    auto* velocity = ctx.Input<framework::Tensor>("Velocity");
    auto velocity_out = ctx.Output<framework::Tensor>("VelocityOut");
    param_out->mutable_data<T>(ctx.GetPlace());
    velocity_out->mutable_data<T>(ctx.GetPlace());

330 331 332
    auto* grad_var = ctx.InputVar("Grad");
    if (grad_var->IsType<framework::LoDTensor>()) {
      auto grad = ctx.Input<framework::Tensor>("Grad");
D
dzhwinter 已提交
333 334 335 336 337 338 339 340 341 342 343 344
      if (platform::is_cpu_place(ctx.GetPlace())) {
        CPUDenseMomentumFunctor<T> functor(param, grad, velocity, learning_rate,
                                           mu, use_nesterov, param_out,
                                           velocity_out);
        functor();
      } else if (platform::is_gpu_place(ctx.GetPlace())) {
        platform::ForRange<DeviceContext> for_range(
            static_cast<const DeviceContext&>(ctx.device_context()),
            param->numel());
        if (use_nesterov) {
          DenseMomentumFunctor<T, UseNesterov> functor(
              param->data<T>(), grad->data<T>(), velocity->data<T>(),
Z
Zhen Wang 已提交
345
              learning_rate->data<float>(), mu, param->numel(),
D
dzhwinter 已提交
346 347 348 349 350 351 352
              param_out->mutable_data<T>(ctx.GetPlace()),
              velocity_out->mutable_data<T>(ctx.GetPlace()));
          for_range(functor);

        } else {
          DenseMomentumFunctor<T, NoNesterov> functor(
              param->data<T>(), grad->data<T>(), velocity->data<T>(),
Z
Zhen Wang 已提交
353
              learning_rate->data<float>(), mu, param->numel(),
D
dzhwinter 已提交
354 355 356 357
              param_out->mutable_data<T>(ctx.GetPlace()),
              velocity_out->mutable_data<T>(ctx.GetPlace()));
          for_range(functor);
        }
358
      }
D
dzhwinter 已提交
359

360 361 362
    } else if (grad_var->IsType<framework::SelectedRows>()) {
      // sparse update embedding with selectedrows
      auto grad = ctx.Input<framework::SelectedRows>("Grad");
S
sidgoyal78 已提交
363

364 365
      // sparse update maybe empty.
      if (grad->rows().size() == 0) {
M
minqiyang 已提交
366
        VLOG(3) << "Grad SelectedRows contains no data!";
367 368
        return;
      }
S
sneaxiy 已提交
369 370 371

      framework::SelectedRows tmp_merged_grad;
      framework::SelectedRows* merged_grad = &tmp_merged_grad;
D
dzhwinter 已提交
372 373 374 375
      math::scatter::MergeAdd<DeviceContext, T> merge_func;
      merge_func(ctx.template device_context<DeviceContext>(), *grad,
                 merged_grad);

S
sneaxiy 已提交
376
      const int64_t* rows = merged_grad->rows().Data(ctx.GetPlace());
D
dzhwinter 已提交
377 378 379 380 381
      int64_t row_numel =
          merged_grad->value().numel() / merged_grad->rows().size();
      platform::ForRange<DeviceContext> for_range(
          static_cast<const DeviceContext&>(ctx.device_context()),
          param->numel());
D
dzhwinter 已提交
382 383 384
      if (use_nesterov) {
        SparseMomentumFunctor<T, UseNesterov> functor(
            param->data<T>(), merged_grad->value().data<T>(),
Z
Zhen Wang 已提交
385 386
            velocity->data<T>(), learning_rate->data<float>(), mu, rows,
            row_numel, static_cast<int64_t>(merged_grad->rows().size()),
D
dzhwinter 已提交
387 388 389 390 391 392 393
            param_out->mutable_data<T>(ctx.GetPlace()),
            velocity_out->mutable_data<T>(ctx.GetPlace()));
        for_range(functor);

      } else {
        SparseMomentumFunctor<T, NoNesterov> functor(
            param->data<T>(), merged_grad->value().data<T>(),
Z
Zhen Wang 已提交
394 395
            velocity->data<T>(), learning_rate->data<float>(), mu, rows,
            row_numel, static_cast<int64_t>(merged_grad->rows().size()),
D
dzhwinter 已提交
396 397 398
            param_out->mutable_data<T>(ctx.GetPlace()),
            velocity_out->mutable_data<T>(ctx.GetPlace()));
        for_range(functor);
399
      }
K
kavyasrinet 已提交
400
    } else {
D
dzhwinter 已提交
401 402 403
      PADDLE_THROW(
          string::Sprintf("MomentumOp only supports LoDTensor or SelectedRows "
                          "gradient, but the received Variable Type is %s",
S
sneaxiy 已提交
404
                          framework::ToTypeName(grad_var->Type())));
K
kavyasrinet 已提交
405
    }
S
sidgoyal78 已提交
406 407 408 409 410
  }
};

}  // namespace operators
}  // namespace paddle