utils.py 13.8 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17
import typing
import enum
import sys
18 19
import numpy as np
import paddle
20
from paddle.incubate.autograd.utils import as_tensors
21 22


23 24 25
##########################################################
# Finite Difference Utils
##########################################################
26 27 28 29 30 31 32 33
def _product(t):
    if isinstance(t, int):
        return t
    else:
        return np.product(t)


def _get_item(t, idx):
34 35 36
    assert isinstance(
        t,
        paddle.fluid.framework.Variable), "The first argument t must be Tensor."
37 38 39 40 41 42 43
    assert isinstance(idx,
                      int), "The second argument idx must be an int number."
    flat_t = paddle.reshape(t, [-1])
    return flat_t.__getitem__(idx)


def _set_item(t, idx, value):
44 45 46
    assert isinstance(
        t,
        paddle.fluid.framework.Variable), "The first argument t must be Tensor."
47 48 49 50 51 52 53 54
    assert isinstance(idx,
                      int), "The second argument idx must be an int number."
    flat_t = paddle.reshape(t, [-1])
    flat_t.__setitem__(idx, value)
    return paddle.reshape(flat_t, t.shape)


def _compute_numerical_jacobian(func, xs, delta, np_dtype):
55 56
    xs = list(as_tensors(xs))
    ys = list(as_tensors(func(*xs)))
57 58 59 60 61 62
    fin_size = len(xs)
    fout_size = len(ys)
    jacobian = list([] for _ in range(fout_size))
    for i in range(fout_size):
        jac_i = list([] for _ in range(fin_size))
        for j in range(fin_size):
63 64
            jac_i[j] = np.zeros((_product(ys[i].shape), _product(xs[j].shape)),
                                dtype=np_dtype)
65 66 67 68 69 70 71
        jacobian[i] = jac_i

    for j in range(fin_size):
        for q in range(_product(xs[j].shape)):
            orig = _get_item(xs[j], q)
            x_pos = orig + delta
            xs[j] = _set_item(xs[j], q, x_pos)
72
            ys_pos = as_tensors(func(*xs))
73 74 75

            x_neg = orig - delta
            xs[j] = _set_item(xs[j], q, x_neg)
76
            ys_neg = as_tensors(func(*xs))
77 78 79 80 81 82 83 84 85 86 87 88

            xs[j] = _set_item(xs[j], q, orig)

            for i in range(fout_size):
                for p in range(_product(ys[i].shape)):
                    y_pos = _get_item(ys_pos[i], p)
                    y_neg = _get_item(ys_neg[i], p)
                    jacobian[i][j][p][q] = (y_pos - y_neg) / delta / 2.
    return jacobian


def _compute_numerical_hessian(func, xs, delta, np_dtype):
89 90
    xs = list(as_tensors(xs))
    ys = list(as_tensors(func(*xs)))
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    fin_size = len(xs)
    hessian = list([] for _ in range(fin_size))
    for i in range(fin_size):
        hessian_i = list([] for _ in range(fin_size))
        for j in range(fin_size):
            hessian_i[j] = np.zeros(
                (_product(xs[i].shape), _product(xs[j].shape)), dtype=np_dtype)
        hessian[i] = hessian_i

    for i in range(fin_size):
        for p in range(_product(xs[i].shape)):
            for j in range(fin_size):
                for q in range(_product(xs[j].shape)):
                    orig = _get_item(xs[j], q)
                    x_pos = orig + delta
                    xs[j] = _set_item(xs[j], q, x_pos)
107 108
                    jacobian_pos = _compute_numerical_jacobian(
                        func, xs, delta, np_dtype)
109 110
                    x_neg = orig - delta
                    xs[j] = _set_item(xs[j], q, x_neg)
111 112
                    jacobian_neg = _compute_numerical_jacobian(
                        func, xs, delta, np_dtype)
113 114
                    xs[j] = _set_item(xs[j], q, orig)
                    hessian[i][j][p][q] = (
115 116
                        jacobian_pos[0][i][0][p] -
                        jacobian_neg[0][i][0][p]) / delta / 2.
117
    return hessian
L
levi131 已提交
118 119


120 121 122 123 124 125 126 127 128 129 130 131 132
def concat_to_matrix(xs, is_batched=False):
    """Concats a tuple of tuple of Jacobian/Hessian matrix into one matrix"""
    rows = []
    for i in range(len(xs)):
        rows.append(np.concatenate([x for x in xs[i]], -1))
    return np.concatenate(rows, 1) if is_batched else np.concatenate(rows, 0)


def _compute_numerical_batch_jacobian(func,
                                      xs,
                                      delta,
                                      np_dtype,
                                      merge_batch=True):
133
    no_batch_jacobian = _compute_numerical_jacobian(func, xs, delta, np_dtype)
134 135
    xs = list(as_tensors(xs))
    ys = list(as_tensors(func(*xs)))
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    fin_size = len(xs)
    fout_size = len(ys)
    bs = xs[0].shape[0]
    bat_jac = []
    for i in range(fout_size):
        batch_jac_i = []
        for j in range(fin_size):
            jac = no_batch_jacobian[i][j]
            jac_shape = jac.shape
            out_size = jac_shape[0] // bs
            in_size = jac_shape[1] // bs
            jac = np.reshape(jac, (bs, out_size, bs, in_size))
            batch_jac_i_j = np.zeros(shape=(out_size, bs, in_size))
            for p in range(out_size):
                for b in range(bs):
                    for q in range(in_size):
                        batch_jac_i_j[p][b][q] = jac[b][p][b][q]
153 154
            if merge_batch:
                batch_jac_i_j = np.reshape(batch_jac_i_j, (out_size, -1))
155 156 157 158 159 160 161
            batch_jac_i.append(batch_jac_i_j)
        bat_jac.append(batch_jac_i)

    return bat_jac


def _compute_numerical_batch_hessian(func, xs, delta, np_dtype):
162
    xs = list(as_tensors(xs))
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    batch_size = xs[0].shape[0]
    fin_size = len(xs)
    hessian = []
    for b in range(batch_size):
        x_l = []
        for j in range(fin_size):
            x_l.append(paddle.reshape(xs[j][b], shape=[1, -1]))
        hes_b = _compute_numerical_hessian(func, x_l, delta, np_dtype)
        if fin_size == 1:
            hessian.append(hes_b[0][0])
        else:
            hessian.append(hes_b)

    hessian_res = []
    for index in range(fin_size):
        x_reshape = paddle.reshape(xs[index], shape=[batch_size, -1])
        for index_ in range(fin_size):
            for i in range(x_reshape.shape[1]):
                tmp = []
                for j in range(batch_size):
                    if fin_size == 1:
                        tmp.extend(hessian[j][i])
                    else:
                        tmp.extend(hessian[j][i][index_][index])
                hessian_res.append(tmp)
        if fin_size == 1:
            return hessian_res

    hessian_result = []
    mid = len(hessian_res) // 2
    for i in range(mid):
        hessian_result.append(
195
            np.stack((hessian_res[i], hessian_res[mid + i]), axis=0))
196 197 198
    return hessian_result


L
levi131 已提交
199
def _compute_numerical_vjp(func, xs, v, delta, np_dtype):
200
    xs = as_tensors(xs)
L
levi131 已提交
201
    jacobian = np.array(_compute_numerical_jacobian(func, xs, delta, np_dtype))
202 203
    if v is None:
        v = [paddle.ones_like(x) for x in xs]
L
levi131 已提交
204 205 206 207 208 209 210 211 212 213 214
    flat_v = np.array([v_el.numpy().reshape(-1) for v_el in v])
    vjp = [np.zeros((_product(x.shape)), dtype=np_dtype) for x in xs]
    for j in range(len(xs)):
        for q in range(_product(xs[j].shape)):
            vjp[j][q] = np.sum(jacobian[:, j, :, q].reshape(flat_v.shape) *
                               flat_v)
    vjp = [vjp[j].reshape(xs[j].shape) for j in range(len(xs))]
    return vjp


def _compute_numerical_vhp(func, xs, v, delta, np_dtype):
215
    xs = list(as_tensors(xs))
L
levi131 已提交
216 217 218 219 220 221 222 223 224
    hessian = np.array(_compute_numerical_hessian(func, xs, delta, np_dtype))
    flat_v = np.array([v_el.numpy().reshape(-1) for v_el in v])
    vhp = [np.zeros((_product(x.shape)), dtype=np_dtype) for x in xs]
    for j in range(len(xs)):
        for q in range(_product(xs[j].shape)):
            vhp[j][q] = np.sum(hessian[:, j, :, q].reshape(flat_v.shape) *
                               flat_v)
    vhp = [vhp[j].reshape(xs[j].shape) for j in range(len(xs))]
    return vhp
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258


##########################################################
# TestCases of different function.
##########################################################
def reduce(x):
    return paddle.sum(x)


def reduce_dim(x):
    return paddle.sum(x, axis=0)


def matmul(x, y):
    return paddle.matmul(x, y)


def mul(x, y):
    return x * y


def pow(x, y):
    return paddle.pow(x, y)


def o2(x, y):
    return paddle.multiply(x, y), paddle.matmul(x, y.t())


def unuse(x, y):
    return paddle.sum(x)


def nested(x):
259

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    def inner(y):
        return x * y

    return inner


def square(x):
    return x * x


##########################################################
# Parameterized Test Utils.
##########################################################

TEST_CASE_NAME = 'suffix'


def place(devices, key='place'):
278
    """A Decorator for a class which will make the class running on different
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    devices .

    Args:
        devices (Sequence[Paddle.CUDAPlace|Paddle.CPUPlace]): Device list.
        key (str, optional): Defaults to 'place'.
    """

    def decorate(cls):
        module = sys.modules[cls.__module__].__dict__
        raw_classes = {
            k: v
            for k, v in module.items() if k.startswith(cls.__name__)
        }

        for raw_name, raw_cls in raw_classes.items():
            for d in devices:
                test_cls = dict(raw_cls.__dict__)
                test_cls.update({key: d})
                new_name = raw_name + '.' + d.__class__.__name__
                module[new_name] = type(new_name, (raw_cls, ), test_cls)
            del module[raw_name]
        return cls

    return decorate


def parameterize(fields, values=None):
306
    """Decorator for a unittest class which make the class running on different
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
    test cases.

    Args:
        fields (Sequence): The feild name sequence of test cases.
        values (Sequence, optional): The test cases sequence. Defaults to None.

    """
    fields = [fields] if isinstance(fields, str) else fields
    params = [dict(zip(fields, vals)) for vals in values]

    def decorate(cls):
        test_cls_module = sys.modules[cls.__module__].__dict__
        for i, values in enumerate(params):
            test_cls = dict(cls.__dict__)
            values = {
                k: staticmethod(v) if callable(v) else v
                for k, v in values.items()
            }
            test_cls.update(values)
            name = cls.__name__ + str(i)
            name = name + '.' + \
                values.get('suffix') if values.get('suffix') else name

            test_cls_module[name] = type(name, (cls, ), test_cls)

        for m in list(cls.__dict__):
            if m.startswith("test"):
                delattr(cls, m)
        return cls

    return decorate


##########################################################
# Utils for transpose different Jacobian/Hessian matrix format.
##########################################################

# B is batch size, N is row size, M is column size.
MatrixFormat = enum.Enum('MatrixFormat', ('NBM', 'BNM', 'NMB', 'NM'))


def _np_transpose_matrix_format(src, src_format, des_format):
    """Transpose Jacobian/Hessian matrix format."""
    supported_format = (MatrixFormat.NBM, MatrixFormat.BNM, MatrixFormat.NMB)
    if src_format not in supported_format or des_format not in supported_format:
        raise ValueError(
            f"Supported Jacobian format is {supported_format}, but got src: {src_format}, des: {des_format}"
        )

    src_axis = {c: i for i, c in enumerate(src_format.name)}
    dst_axis = tuple(src_axis[c] for c in des_format.name)

    return np.transpose(src, dst_axis)


def _np_concat_matrix_sequence(src, src_format=MatrixFormat.NM):
363
    """Convert a sequence of sequence of Jacobian/Hessian matrix into one huge
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
    matrix."""

    def concat_col(xs):
        if src_format in (MatrixFormat.NBM, MatrixFormat.BNM, MatrixFormat.NM):
            return np.concatenate(xs, axis=-1)
        else:
            return np.concatenate(xs, axis=1)

    def concat_row(xs):
        if src_format in (MatrixFormat.NBM, MatrixFormat.NM, MatrixFormat.NMB):
            return np.concatenate(xs, axis=0)
        else:
            return np.concatenate(xs, axis=1)

    supported_format = (MatrixFormat.NBM, MatrixFormat.BNM, MatrixFormat.NMB,
                        MatrixFormat.NM)
    if src_format not in supported_format:
        raise ValueError(
            f"Supported Jacobian format is {supported_format}, but got {src_format}"
        )
    if not isinstance(src, typing.Sequence):
        return src
    if not isinstance(src[0], typing.Sequence):
        src = [src]
    return concat_row(tuple(concat_col(xs) for xs in src))
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422


##########################################################
# Utils for generating test data.
##########################################################
def gen_static_data_and_feed(xs, v, stop_gradient=True):
    feed = {}
    if isinstance(xs, typing.Sequence):
        static_xs = []
        for i, x in enumerate(xs):
            x = paddle.static.data(f"x{i}", x.shape, x.dtype)
            x.stop_gradient = stop_gradient
            static_xs.append(x)
        feed.update({f'x{idx}': value for idx, value in enumerate(xs)})
    else:
        static_xs = paddle.static.data('x', xs.shape, xs.dtype)
        static_xs.stop_gradient = stop_gradient
        feed.update({'x': xs})

    if isinstance(v, typing.Sequence):
        static_v = []
        for i, e in enumerate(v):
            e = paddle.static.data(f'v{i}', e.shape, e.dtype)
            e.stop_gradient = stop_gradient
            static_v.append(e)
        feed.update({f'v{i}': value for i, value in enumerate(v)})
    elif v is not None:
        static_v = paddle.static.data('v', v.shape, v.dtype)
        static_v.stop_gradient = stop_gradient
        feed.update({'v': v})
    else:
        static_v = v

    return feed, static_xs, static_v