elementwise_max_op.h 5.3 KB
Newer Older
F
wip  
fengjiayi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/operators/elementwise_op_function.h"

namespace paddle {
namespace operators {

template <typename T>
struct MaxFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a > b ? a : b; }
};

template <typename DeviceContext, typename T>
class ElementwiseMaxKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* z = ctx.Output<Tensor>("Out");
    z->mutable_data<T>(ctx.GetPlace());
    TransformFunctor<MaxFunctor<T>, T, DeviceContext> functor(
        x, y, z, ctx.template device_context<DeviceContext>(), MaxFunctor<T>());

    auto x_dims = x->dims();
    auto y_dims = y->dims();
    PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
                      "Rank of first input must >= rank of second input.");

    if (x_dims == y_dims) {
      functor.Run();
      return;
    }

    int axis = ctx.Attr<int>("axis");
    axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
    PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                   "Axis should be in range [0, x_dims)");

    int pre, n, post;
    get_mid_dims(x_dims, y_dims, axis, pre, n, post);
    if (post == 1) {
      functor.RunRowWise(n, pre);
      return;
    } else {
      functor.RunMidWise(n, pre, post);
      return;
    }
  }
};

template <typename T>
F
fengjiayi 已提交
68
struct ElementwiseMaxGradFunctor {
F
wip  
fengjiayi 已提交
69 70 71 72 73
  template <typename Device, typename X, typename Y, typename Z, typename dX,
            typename dY, typename dZ>
  void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto y_e = framework::EigenVector<T>::Flatten(*y);
F
fengjiayi 已提交
74
    auto dz_e = framework::EigenVector<T>::Flatten(*dz);
F
wip  
fengjiayi 已提交
75 76 77

    if (dx) {
      auto dx_e = framework::EigenVector<T>::Flatten(*dx);
F
fengjiayi 已提交
78
      dx_e.device(d) = (x_e > y_e).template cast<T>() * dz_e;
F
wip  
fengjiayi 已提交
79 80 81
    }
    if (dy) {
      auto dy_e = framework::EigenVector<T>::Flatten(*dy);
F
fengjiayi 已提交
82
      dy_e.device(d) = (x_e <= y_e).template cast<T>() * dz_e;
F
wip  
fengjiayi 已提交
83 84 85 86 87
    }
  }
};

template <typename T>
F
fengjiayi 已提交
88
struct ElementwiseMaxBroadCastGradFunctor {
F
wip  
fengjiayi 已提交
89
  template <typename Device, typename X, typename Y, typename Z, typename dX,
F
fengjiayi 已提交
90 91 92 93
            typename dY, typename dZ, typename Pre, typename N>
  void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto y_e = framework::EigenVector<T>::Flatten(*y);
F
wip  
fengjiayi 已提交
94
    auto dz_e = framework::EigenVector<T>::Flatten(*dz);
F
fengjiayi 已提交
95 96 97 98 99 100 101 102 103 104 105 106

    auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
                         .broadcast(Eigen::DSizes<int, 2>(pre, 1))
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));

    if (dx) {
      auto dx_e = framework::EigenVector<T>::Flatten(*dx);
      dx_e.device(d) = (x_e > y_e_bcast).template cast<T>() * dz_e;
    }

    if (dy) {
      auto dy_e = framework::EigenVector<T>::Flatten(*dy);
F
fengjiayi 已提交
107
      dy_e.device(d) = ((x_e <= y_e_bcast).template cast<T>() * dz_e)
F
fengjiayi 已提交
108 109 110 111 112 113 114 115 116 117 118 119
                           .reshape(Eigen::DSizes<int, 2>(pre, n))
                           .sum(Eigen::array<int, 1>{{0}});
    }
  }
};

template <typename T>
struct ElementwiseMaxBroadCast2GradFunctor {
  template <typename Device, typename X, typename Y, typename Z, typename dX,
            typename dY, typename dZ, typename Pre, typename N, typename Post>
  void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
                  Post post) {
F
wip  
fengjiayi 已提交
120 121
    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto y_e = framework::EigenVector<T>::Flatten(*y);
F
fengjiayi 已提交
122 123 124 125 126
    auto dz_e = framework::EigenVector<T>::Flatten(*dz);

    auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
                         .broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));
F
wip  
fengjiayi 已提交
127 128
    if (dx) {
      auto dx_e = framework::EigenVector<T>::Flatten(*dx);
F
fengjiayi 已提交
129
      dx_e.device(d) = (x_e > y_e_bcast).template cast<T>() * dz_e;
F
wip  
fengjiayi 已提交
130
    }
F
fengjiayi 已提交
131

F
wip  
fengjiayi 已提交
132 133
    if (dy) {
      auto dy_e = framework::EigenVector<T>::Flatten(*dy);
F
fengjiayi 已提交
134
      dy_e.device(d) = ((x_e <= y_e_bcast).template cast<T>() * dz_e)
F
fengjiayi 已提交
135 136
                           .reshape(Eigen::DSizes<int, 3>(pre, n, post))
                           .sum(Eigen::array<int, 2>{{0, 2}});
F
wip  
fengjiayi 已提交
137 138 139 140
    }
  }
};

F
fengjiayi 已提交
141 142 143 144 145 146 147 148 149 150
template <typename DeviceContext, typename T>
class ElementwiseMaxGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    ElementwiseGradCompute<DeviceContext, T, ElementwiseMaxGradFunctor<T>,
                           ElementwiseMaxBroadCastGradFunctor<T>,
                           ElementwiseMaxBroadCast2GradFunctor<T>>(ctx);
  }
};

F
wip  
fengjiayi 已提交
151 152
}  // namespace operators
}  // namespace paddle