sum_op.h 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
14
#include "paddle/framework/lod_tensor_array.h"
15
#include "paddle/framework/op_registry.h"
Q
QI JUN 已提交
16 17
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/selected_rows_functor.h"
18 19 20 21 22

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
Q
QI JUN 已提交
23 24
using SelectedRows = framework::SelectedRows;
using LoDTensor = framework::LoDTensor;
25 26 27 28
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

Q
QI JUN 已提交
29
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
30
class SumKernel : public framework::OpKernel<T> {
31
 public:
32
  void Compute(const framework::ExecutionContext &context) const override {
Y
Yu Yang 已提交
33
    auto in_vars = context.MultiInputVar("X");
Q
QI JUN 已提交
34 35 36
    int N = in_vars.size();
    auto out_var = context.OutputVar("Out");

Y
Yu Yang 已提交
37 38
    bool in_place = out_var == in_vars[0];

Q
QI JUN 已提交
39
    if (out_var->IsType<framework::LoDTensor>()) {
40
      auto *out = context.Output<Tensor>("Out");
Q
QI JUN 已提交
41
      auto result = EigenVector<T>::Flatten(*out);
Y
Yu Yang 已提交
42
      if (!in_place) {
Y
Refine  
Yang Yu 已提交
43
        out->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
44 45 46
        math::SetConstant<DeviceContext, T> constant_functor;
        constant_functor(context.template device_context<DeviceContext>(), out,
                         0.0);
Y
Yu Yang 已提交
47
      }
Q
QI JUN 已提交
48

Q
QI JUN 已提交
49 50 51
      math::SelectedRowsAddToTensor<DeviceContext, T> functor;
      auto &place =
          *context.template device_context<DeviceContext>().eigen_device();
Y
Yu Yang 已提交
52 53
      // If in_place, just skip the first tensor
      for (int i = in_place ? 1 : 0; i < N; i++) {
Q
QI JUN 已提交
54
        if (in_vars[i]->IsType<framework::LoDTensor>()) {
55
          auto &in_t = in_vars[i]->Get<framework::LoDTensor>();
56 57 58
          if (in_t.numel() == 0) {
            continue;
          }
Q
QI JUN 已提交
59 60 61
          auto in = EigenVector<T>::Flatten(in_t);
          result.device(place) = result + in;
        } else if (in_vars[i]->IsType<framework::SelectedRows>()) {
62
          auto &in_t = in_vars[i]->Get<framework::SelectedRows>();
Q
QI JUN 已提交
63
          functor(context.template device_context<DeviceContext>(), in_t, out);
Q
QI JUN 已提交
64 65 66 67 68
        } else {
          PADDLE_THROW("Variable type must be LoDTensor/SelectedRows.");
        }
      }
    } else if (out_var->IsType<framework::SelectedRows>()) {
Y
Yu Yang 已提交
69
      PADDLE_ENFORCE(!in_place, "SelectedRows not support inplace sum now");
70 71
      auto *out = context.Output<SelectedRows>("Out");
      auto *out_value = out->mutable_value();
Q
QI JUN 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84

      // Runtime InferShape
      size_t first_dim = 0;
      for (int i = 0; i < N; i++) {
        first_dim += in_vars[i]->Get<SelectedRows>().rows().size();
      }
      auto in_dim = in_vars[0]->Get<SelectedRows>().value().dims();
      auto in_dim_vec = framework::vectorize(in_dim);
      in_dim_vec[0] = static_cast<int64_t>(first_dim);

      out_value->Resize(framework::make_ddim(in_dim_vec));
      out_value->mutable_data<T>(context.GetPlace());

Q
QI JUN 已提交
85
      math::SelectedRowsAddTo<DeviceContext, T> functor;
Q
QI JUN 已提交
86 87 88 89

      int64_t offset = 0;
      for (int i = 0; i < N; i++) {
        PADDLE_ENFORCE_EQ(out->height(),
90
                          in_vars[i]->Get<SelectedRows>().height());
Q
QI JUN 已提交
91 92
        functor(context.template device_context<DeviceContext>(),
                in_vars[i]->Get<SelectedRows>(), offset, out);
Q
QI JUN 已提交
93 94
        offset += in_vars[i]->Get<SelectedRows>().value().numel();
      }
95 96 97 98 99 100 101 102 103 104 105 106 107
    } else if (out_var->IsType<framework::LoDTensorArray>()) {
      auto &out_array = *out_var->GetMutable<framework::LoDTensorArray>();
      for (size_t i = in_place ? 1 : 0; i < in_vars.size(); ++i) {
        PADDLE_ENFORCE(in_vars[i]->IsType<framework::LoDTensorArray>(),
                       "Only support all inputs are TensorArray");
        auto &in_array = in_vars[i]->Get<framework::LoDTensorArray>();

        for (size_t i = 0; i < in_array.size(); ++i) {
          if (in_array[i].numel() != 0) {
            if (i >= out_array.size()) {
              out_array.resize(i + 1);
            }
            if (out_array[i].numel() == 0) {
D
dzhwinter 已提交
108 109
              framework::CopyFrom(in_array[i], in_array[i].place(),
                                  context.device_context(), &out_array[i]);
110 111 112 113 114
              out_array[i].set_lod(in_array[i].lod());
            } else {
              PADDLE_ENFORCE(out_array[i].lod() == in_array[i].lod());
              auto in = EigenVector<T>::Flatten(in_array[i]);
              auto result = EigenVector<T>::Flatten(out_array[i]);
Q
QI JUN 已提交
115 116
              result.device(*context.template device_context<DeviceContext>()
                                 .eigen_device()) = result + in;
117 118 119 120 121 122 123
            }
          }
        }
      }
    } else {
      PADDLE_THROW("Unexpected branch, output variable type is %s",
                   out_var->Type().name());
124 125 126 127 128
    }
  }
};
}  // namespace operators
}  // namespace paddle