math_function_test.cu 9.4 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
#include "gtest/gtest.h"
#include "paddle/operators/math/math_function.h"

TEST(math_function, notrans_mul_trans) {
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input1_gpu;
  paddle::framework::Tensor input2_gpu;
  paddle::framework::Tensor out_gpu;
  paddle::framework::Tensor out;

  auto* cpu_place = new paddle::platform::CPUPlace();
  float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
  float arr[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr, 6 * sizeof(float));

  auto* gpu_place = new paddle::platform::GPUPlace(0);
  paddle::platform::CUDADeviceContext context(*gpu_place);

  input1_gpu.CopyFrom<float>(input1, *gpu_place, context);
  input2_gpu.CopyFrom<float>(input1, *gpu_place, context);

  out_gpu.mutable_data<float>({2, 2}, *gpu_place);

  paddle::operators::math::matmul<paddle::platform::GPUPlace, float>(
      context, input1_gpu, false, input2_gpu, true, 1, &out_gpu, 0);

  out.CopyFrom<float>(out_gpu, *cpu_place, context);

  float* out_ptr = out.data<float>();
  context.Wait();
  EXPECT_EQ(out_ptr[0], 5);
  EXPECT_EQ(out_ptr[1], 14);
  EXPECT_EQ(out_ptr[2], 14);
  EXPECT_EQ(out_ptr[3], 50);
  delete gpu_place;
}

TEST(math_function, trans_mul_notrans) {
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input1_gpu;
  paddle::framework::Tensor input2_gpu;
  paddle::framework::Tensor out_gpu;
  paddle::framework::Tensor out;

  auto* cpu_place = new paddle::platform::CPUPlace();
  float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
  float arr[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr, 6 * sizeof(float));

  auto* gpu_place = new paddle::platform::GPUPlace(0);
  paddle::platform::CUDADeviceContext context(*gpu_place);

  input1_gpu.CopyFrom<float>(input1, *gpu_place, context);
  input2_gpu.CopyFrom<float>(input1, *gpu_place, context);

  out_gpu.mutable_data<float>({3, 3}, *gpu_place);

  paddle::operators::math::matmul<paddle::platform::GPUPlace, float>(
      context, input1_gpu, true, input2_gpu, false, 1, &out_gpu, 0);

  out.CopyFrom<float>(out_gpu, *cpu_place, context);

  float* out_ptr = out.data<float>();
  context.Wait();
  EXPECT_EQ(out_ptr[0], 9);
  EXPECT_EQ(out_ptr[1], 12);
  EXPECT_EQ(out_ptr[2], 15);
  EXPECT_EQ(out_ptr[3], 12);
  EXPECT_EQ(out_ptr[4], 17);
  EXPECT_EQ(out_ptr[5], 22);
  EXPECT_EQ(out_ptr[6], 15);
  EXPECT_EQ(out_ptr[7], 22);
  EXPECT_EQ(out_ptr[8], 29);
  delete gpu_place;
}

TEST(math_function, gemm_notrans_cublas) {
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input2;
  paddle::framework::Tensor input3;
  paddle::framework::Tensor input1_gpu;
  paddle::framework::Tensor input2_gpu;
  paddle::framework::Tensor input3_gpu;

  int m = 2;
  int n = 3;
  int k = 3;
  auto* cpu_place = new paddle::platform::CPUPlace();
  float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
  float arr1[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr1, 6 * sizeof(float));
  float* input2_ptr = input2.mutable_data<float>({3, 4}, *cpu_place);
  float arr2[12] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
  memcpy(input2_ptr, arr2, 12 * sizeof(float));
  float* input3_ptr = input3.mutable_data<float>({2, 4}, *cpu_place);
  float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
  memcpy(input3_ptr, arr3, 8 * sizeof(float));

  auto* gpu_place = new paddle::platform::GPUPlace(0);
  paddle::platform::CUDADeviceContext context(*gpu_place);

  input1_gpu.CopyFrom<float>(input1, *gpu_place, context);
  input2_gpu.CopyFrom<float>(input2, *gpu_place, context);
  input3_gpu.CopyFrom<float>(input3, *gpu_place, context);
  float* a = input1_gpu.data<float>();
  float* b = input2_gpu.data<float>();
  float* c = input3_gpu.mutable_data<float>(*gpu_place);

  paddle::operators::math::gemm<paddle::platform::GPUPlace, float>(
      context, false, false, m, n, k, 1, a, 3, b + 1, 4, 1, c + 1, 4);

  input3.CopyFrom<float>(input3_gpu, *cpu_place, context);

  // numpy code:
  // a = np.arange(6).reshape(2, 3)
  // b = np.arange(12).reshape(3, 4)[:, 1:]
  // c = np.arange(8).reshape(2, 4)[:, 1:]
  // out = np.arange(8).reshape(2, 4)
  // out[:, 1:] = np.dot(a, b) + c
  context.Wait();
  EXPECT_EQ(input3_ptr[0], 0);
  EXPECT_EQ(input3_ptr[1], 24);
  EXPECT_EQ(input3_ptr[2], 28);
  EXPECT_EQ(input3_ptr[3], 32);
  EXPECT_EQ(input3_ptr[4], 4);
  EXPECT_EQ(input3_ptr[5], 73);
  EXPECT_EQ(input3_ptr[6], 86);
  EXPECT_EQ(input3_ptr[7], 99);
  delete gpu_place;
}

TEST(math_function, gemm_trans_cublas) {
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input2;
  paddle::framework::Tensor input3;
  paddle::framework::Tensor input1_gpu;
  paddle::framework::Tensor input2_gpu;
  paddle::framework::Tensor input3_gpu;

  int m = 2;
  int n = 3;
  int k = 3;
  auto* cpu_place = new paddle::platform::CPUPlace();
  float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
  float arr1[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr1, 6 * sizeof(float));
  float* input2_ptr = input2.mutable_data<float>({4, 3}, *cpu_place);
  float arr2[12] = {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11};
  memcpy(input2_ptr, arr2, 12 * sizeof(float));
  float* input3_ptr = input3.mutable_data<float>({2, 4}, *cpu_place);
  float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
  memcpy(input3_ptr, arr3, 8 * sizeof(float));

  auto* gpu_place = new paddle::platform::GPUPlace(0);
  paddle::platform::CUDADeviceContext context(*gpu_place);

  input1_gpu.CopyFrom<float>(input1, *gpu_place, context);
  input2_gpu.CopyFrom<float>(input2, *gpu_place, context);
  input3_gpu.CopyFrom<float>(input3, *gpu_place, context);
  float* a = input1_gpu.data<float>();
  float* b = input2_gpu.data<float>();
  float* c = input3_gpu.mutable_data<float>(*gpu_place);

  paddle::operators::math::gemm<paddle::platform::GPUPlace, float>(
      context, false, true, m, n, k, 1, a, 3, b + 3, 3, 1, c + 1, 4);

  input3.CopyFrom<float>(input3_gpu, *cpu_place, context);
  context.Wait();

  EXPECT_EQ(input3_ptr[0], 0);
  EXPECT_EQ(input3_ptr[1], 24);
  EXPECT_EQ(input3_ptr[2], 28);
  EXPECT_EQ(input3_ptr[3], 32);
  EXPECT_EQ(input3_ptr[4], 4);
  EXPECT_EQ(input3_ptr[5], 73);
  EXPECT_EQ(input3_ptr[6], 86);
  EXPECT_EQ(input3_ptr[7], 99);
  delete gpu_place;
}

TEST(math_function, selected_rows_add) {
  using namespace paddle::framework;
  using namespace paddle::platform;
  using namespace paddle::operators::math;

  CPUPlace gpu_place(0);
  CUDADeviceContext ctx(gpu_place);
  SetConstant<GPUPlace, float> functor;
  int64_t height = 10;
  int64_t row_numel = 10;

  Vector<int64_t> rows1{0, 4, 7};
  std::unique_ptr<SelectedRows> selected_rows1{new SelectedRows(rows1, height)};
  auto* in1_value = selected_rows1->mutable_value();
  in1_value->mutable_data<float>(
      make_ddim({static_cast<int64_t>(rows1.size()), row_numel}), gpu_place);
  functor(ctx, in1_value, 1.0);

  Vector<int64_t> rows2{0, 5, 7, 9};
  std::unique_ptr<SelectedRows> selected_rows2{new SelectedRows(rows2, height)};
  auto* in2_value = selected_rows2->mutable_value();
  in2_value->mutable_data<float>(
      make_ddim({static_cast<int64_t>(rows2.size()), row_numel}), gpu_place);
  functor(ctx, in2_value, 2.0);

  std::unique_ptr<SelectedRows> output{new SelectedRows()};
  auto* out_value = output->mutable_value();

  // simplely concat two SelectedRows
  out_value->mutable_data<float>(make_ddim({7, 10}), gpu_place);

  SelectedRowsAdd<GPUPlace, float> add_functor;
  add_functor(ctx, *selected_rows1, *selected_rows2, output.get());

  auto out_height = output->height();
  EXPECT_EQ(out_height, height);

  auto& out_rows = output->rows();

  // input1 rows
  EXPECT_EQ(out_rows[0], 0);
  EXPECT_EQ(out_rows[1], 4);
  EXPECT_EQ(out_rows[2], 7);
  // input2 rows
  EXPECT_EQ(out_rows[3], 0);
  EXPECT_EQ(out_rows[4], 5);
  EXPECT_EQ(out_rows[5], 7);
  EXPECT_EQ(out_rows[6], 9);

  Tensor out_cpu;
  out_cpu.CopyFrom<float>(*out_value, platform::CPUPlace(), ctx);
  ctx.Wait();

  auto* out_cpu_data = out_cpu.data<float>();
  // input1 value
  EXPECT_EQ(out_cpu_data[0 * row_numel + 0], 1.0);
  EXPECT_EQ(out_cpu_data[0 * row_numel + 8], 1.0);
  EXPECT_EQ(out_cpu_data[1 * row_numel + 1], 1.0);
  EXPECT_EQ(out_cpu_data[2 * row_numel + 6], 1.0);
  // input2 value
  EXPECT_EQ(out_cpu_data[3 * row_numel + 3], 2.0);
  EXPECT_EQ(out_cpu_data[3 * row_numel + 8], 2.0);
  EXPECT_EQ(out_cpu_data[4 * row_numel + 4], 2.0);
  EXPECT_EQ(out_cpu_data[5 * row_numel + 7], 2.0);
  EXPECT_EQ(out_cpu_data[6 * row_numel + 9], 2.0);

  std::unique_ptr<Tensor> tensor1{new Tensor()};
  tensor1->mutable_data<float>(make_ddim({height, row_numel}), gpu_place);
  SetConstant<GPUPlace, float> constant_functor;
  constant_functor(ctx, tensor1.get(), 3.0);

  std::unique_ptr<Tensor> tensor2{new Tensor()};
  tensor2->mutable_data<float>(make_ddim({height, row_numel}), gpu_place);

  SelectedRowsAddTensor<GPUPlace, float> add_tensor_functor;
  add_tensor_functor(ctx, *output, *tensor1, tensor2.get());

  Tensor tensor2_cpu;
  tensor2_cpu.CopyFrom<float>(*tensor2, platform::CPUPlace(), ctx);
  ctx.Wait();

  auto* tensor2_cpu_data = tensor2_cpu->data<float>();
  // row0: 1.0 + 2.0 + 3.0
  EXPECT_EQ(tensor2_cpu_data[0 * row_numel + 0], 6.0);
  // row1: 3.0
  EXPECT_EQ(tensor2_cpu_data[1 * row_numel + 1], 3.0);
  // row4 : 1.0 + 3.0
  EXPECT_EQ(tensor2_cpu_data[4 * row_numel + 6], 4.0);
  // row5: 2.0 + 3.0
  EXPECT_EQ(tensor2_cpu_data[5 * row_numel + 7], 5.0);
  // row6: 3.0
  EXPECT_EQ(tensor2_cpu_data[6 * row_numel + 1], 3.0);
  // row7: 1.0 + 2.0 + 3.0
  EXPECT_EQ(tensor2_cpu_data[7 * row_numel + 3], 6.0);
  // row9: 2.0 + 3.0
  EXPECT_EQ(tensor2_cpu_data[9 * row_numel + 6], 5.0);
}