elementwise.h 30.6 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18
#include "paddle/fluid/operators/kernel_primitives/kernel_primitives.h"
#include "paddle/fluid/platform/aligned_vector.h"
19
#include "paddle/fluid/platform/device/gpu/gpu_launch_config.h"
20
#include "paddle/fluid/platform/function_traits.h"
21 22 23 24
#include "paddle/pten/core/dense_tensor.h"

namespace pten {

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
namespace kps = paddle::operators::kernel_primitives;
enum ElementwiseType { kUnary = 1, kBinary = 2, kTernary = 3, kAny = -1 };

/* Packing scalar type T(float, int etc.) into Array<T, NumOuts> type
   for supporting multiple-output feature in elementwise system.*/
template <class T, int Num>
using ConditionalT =
    typename std::conditional_t<Num == 1, T, paddle::framework::Array<T, Num>>;

template <typename InT,
          typename OutT,
          int VecSize,
          typename Functor,
          int Arity,
          bool CallElementwiseAny = false>
struct ElementwisePrimitiveCaller {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
                                    OutT *result);
};

template <typename InT, typename OutT, int VecSize, typename Functor, int Arity>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, Arity, true> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
                                    OutT *result) {
    kps::ElementwiseAny<InT, OutT, VecSize, 1, 1, Arity, Functor>(
        result, args, func);
  }
};

template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 1, false> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
                                    OutT *result) {
    kps::ElementwiseUnary<InT, OutT, VecSize, 1, 1, Functor>(
        result, args[0], func);
  }
};

template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 2, false> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
                                    OutT *result) {
    kps::ElementwiseBinary<InT, OutT, VecSize, 1, 1, Functor>(
        result, args[0], args[1], func);
  }
};

template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 3, false> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
                                    OutT *result) {
    kps::ElementwiseTernary<InT, OutT, VecSize, 1, 1, Functor>(
        result, args[0], args[1], args[2], func);
  }
};

template <typename OutT, int VecSize, bool IsBoundary, int NumOuts>
struct ElementwiseWriteDataCaller {
  __device__ __forceinline__ void operator()(
89
      paddle::framework::Array<_ptr_ OutT *, NumOuts> outs,
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
      ConditionalT<OutT, NumOuts> src[VecSize],
      int block_offset,
      int num) {
    OutT dst[NumOuts][VecSize];
#pragma unroll
    for (int i = 0; i < VecSize; ++i) {
#pragma unroll
      for (int j = 0; j < NumOuts; ++j) {
        dst[j][i] = (src[i])[j];
      }
    }
#pragma unroll
    for (int i = 0; i < NumOuts; ++i) {
      kps::WriteData<OutT, VecSize, 1, 1, IsBoundary>(
          outs[i] + block_offset, dst[i], num);
    }
  }
};

template <typename OutT, int VecSize, bool IsBoundary>
struct ElementwiseWriteDataCaller<OutT, VecSize, IsBoundary, 1> {
  __device__ __forceinline__ void operator()(
112
      paddle::framework::Array<_ptr_ OutT *, 1> outs,
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
      OutT src[VecSize],
      int block_offset,
      int num) {
    kps::WriteData<OutT, VecSize, 1, 1, IsBoundary>(
        outs[0] + block_offset, src, num);
  }
};

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
          int NumOuts,
          int VecSize,
          bool IsBoundary>
__device__ void VectorizedElementwiseKernelImpl(
129 130
    const paddle::framework::Array<const _ptr_ InT *__restrict__, Arity> &in,
    paddle::framework::Array<_ptr_ OutT *, NumOuts> outs,
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    int num,
    int data_offset,
    Functor func) {
  InT args[Arity][VecSize];
  ConditionalT<OutT, NumOuts> result[VecSize];

#pragma unroll
  for (int i = 0; i < Arity; i++) {
    kps::Init<InT, VecSize>(args[i], static_cast<InT>(1.0f));
    kps::ReadData<InT, VecSize, 1, 1, IsBoundary>(
        args[i], in[i] + data_offset, num);
  }

  constexpr bool kCallElementwiseAny =
      paddle::platform::FunctionTraits<Functor>::has_pointer_args;
  ElementwisePrimitiveCaller<InT,
                             ConditionalT<OutT, NumOuts>,
                             VecSize,
                             Functor,
                             Arity,
                             kCallElementwiseAny>()(func, args, result);

  ElementwiseWriteDataCaller<OutT, VecSize, IsBoundary, NumOuts>()(
      outs, result, data_offset, num);
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
          int NumOuts,
          int VecSize>
__global__ void VectorizedElementwiseKernel(
164 165
    paddle::framework::Array<const _ptr_ InT *__restrict__, Arity> ins,
    paddle::framework::Array<_ptr_ OutT *, NumOuts> outs,
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    int size,
    int main_offset,
    Functor func) {
  int data_offset = BLOCK_ID_X * BLOCK_NUM_X * VecSize;
  int stride = BLOCK_NUM_X * GRID_NUM_X * VecSize;
  for (; data_offset < main_offset; data_offset += stride) {
    VectorizedElementwiseKernelImpl<InT,
                                    OutT,
                                    Functor,
                                    Arity,
                                    NumOuts,
                                    VecSize,
                                    false>(
        ins, outs, VecSize * BLOCK_NUM_X, data_offset, func);
  }

  int num = size - data_offset;
  if (num > 0) {
    VectorizedElementwiseKernelImpl<InT,
                                    OutT,
                                    Functor,
                                    Arity,
                                    NumOuts,
                                    VecSize,
                                    true>(ins, outs, num, data_offset, func);
  }
}

template <typename InT, typename OutT>
int GetVectorizedSizeForTensors(const std::vector<const DenseTensor *> &ins,
                                const std::vector<DenseTensor *> &outs) {
  int vec_size = 4;
  for (auto iter = ins.begin(); iter != ins.end(); ++iter) {
    vec_size = std::min<int>(
        vec_size, paddle::platform::GetVectorizedSize((*iter)->data<InT>()));
  }
  for (auto iter = outs.begin(); iter != outs.end(); ++iter) {
    vec_size = std::min<int>(
        vec_size, paddle::platform::GetVectorizedSize((*iter)->data<OutT>()));
  }
  return vec_size;
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
          int NumOuts,
          int VecSize>
215
void ElementwiseCudaKernel(const KPDevice &ctx,
216 217 218 219
                           const std::vector<const DenseTensor *> &ins,
                           std::vector<DenseTensor *> *outs,
                           Functor func) {
  auto numel = ins[0]->numel();
220 221
  paddle::framework::Array<const _ptr_ InT *__restrict__, Arity> ins_data;
  paddle::framework::Array<_ptr_ OutT *, NumOuts> outs_data;
222 223 224 225 226 227 228 229

  for (int i = 0; i < Arity; ++i) {
    ins_data[i] = ins[i]->data<InT>();
  }
  for (int i = 0; i < NumOuts; ++i) {
    outs_data[i] = (*outs)[i]->mutable_data<OutT>();
  }
#ifdef PADDLE_WITH_XPU2
230 231 232
  int block_size = 64;
  int grid_size = 8;
  auto stream = ctx.x_context()->xpu_stream;
233 234 235 236 237 238 239 240 241
  int main_offset = (numel / (VecSize * block_size)) * VecSize * block_size;
  VectorizedElementwiseKernel<InT,
                              OutT,
                              Functor,
                              Arity,
                              NumOuts,
                              VecSize><<<grid_size, block_size, 0, stream>>>(
      ins_data, outs_data, numel, main_offset, func);
#else
242 243 244
  auto gpu_config = GetGpuLaunchConfig1D(ctx, numel, VecSize);
  int main_offset = (numel / (VecSize * gpu_config.GetBlockSize())) * VecSize *
                    gpu_config.GetBlockSize();
245
  auto stream = ctx.stream();
246 247 248 249 250
  VectorizedElementwiseKernel<InT, OutT, Functor, Arity, NumOuts, VecSize><<<
      gpu_config.block_per_grid,
      gpu_config.thread_per_block,
      0,
      stream>>>(ins_data, outs_data, numel, main_offset, func);
251 252 253 254 255 256 257 258 259
#endif
}

template <ElementwiseType ET,
          typename InT,
          typename OutT,
          typename Functor,
          int NumOuts = 1>
void LaunchSameDimsElementwiseCudaKernel(
260
    const KPDevice &ctx,
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
    const std::vector<const DenseTensor *> &ins,
    std::vector<DenseTensor *> *outs,
    Functor func) {
  using Traits = paddle::platform::FunctionTraits<Functor>;
  const int kArity =
      Traits::has_pointer_args ? static_cast<int>(ET) : Traits::arity;
  PADDLE_ENFORCE_EQ(ins.size(),
                    kArity,
                    paddle::platform::errors::InvalidArgument(
                        "The number of inputs is expected to be equal to the "
                        "arity of functor. But recieved: the number of inputs "
                        "is %d, the arity of functor is %d.",
                        ins.size(),
                        kArity));
  PADDLE_ENFORCE_EQ(outs->size(),
                    NumOuts,
                    paddle::platform::errors::InvalidArgument(
                        "Number of outputs shall equal to number of functions, "
                        "but number of outputs is %d, of functions is %d.",
                        outs->size(),
                        NumOuts));

  if (NumOuts > 1) {
    for (int i = 1; i < NumOuts; ++i) {
      PADDLE_ENFORCE_EQ(
          (*outs)[i]->dims(),
          (*outs)[0]->dims(),
          paddle::platform::errors::InvalidArgument(
              "The shape of each output tensor shall be identical yet, "
              "but %dth output tensor`s shape is not.",
              i));
    }
  }

  // calculate the max vec_size for all ins and outs
  int vec_size = GetVectorizedSizeForTensors<InT, OutT>(ins, *outs);
  switch (vec_size) {
    case 4:
      ElementwiseCudaKernel<InT, OutT, Functor, kArity, NumOuts, 4>(
          ctx, ins, outs, func);
      break;
    case 2:
      ElementwiseCudaKernel<InT, OutT, Functor, kArity, NumOuts, 2>(
          ctx, ins, outs, func);
      break;
    case 1:
      ElementwiseCudaKernel<InT, OutT, Functor, kArity, NumOuts, 1>(
          ctx, ins, outs, func);
      break;
    default: {
      PADDLE_THROW(paddle::platform::errors::Unimplemented(
          "Unsupported vectorized size: %d !", vec_size));
      break;
    }
  }
}

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
struct DimensionsTransform {
  using DimVector = std::vector<int64_t>;
  typedef void (*MergeFunctor)(
      bool &, std::vector<DimVector> &, DimVector &, int, int);
  int64_t dim_size;
  DimVector out_dims;
  std::vector<DimVector> in_dims;

 private:
  // To compensate the lackage of input_tensors` dimension with input variable
  // 'axis'
  void InputDimensionsExtend(int N, int axis) {
    for (auto &in_dim : in_dims) {
      int64_t in_idx = 0;
      if (in_dim.size() < dim_size) {
        DimVector tmp_dim(dim_size, 1);
        do {
          if (in_dim[in_idx] == out_dims[axis] || in_dim[in_idx] == 1) {
            tmp_dim[axis] = in_dim[in_idx];
            in_idx++;
            axis++;
          } else {
            PADDLE_THROW(paddle::platform::errors::InvalidArgument(
                "The %d-th dimension of input tensor is expected to be equal "
                "with the %d-th dimension of output tensor %d or 1, but "
                "recieved %d.",
                in_idx + 1,
                axis + 1,
                out_dims[axis],
                in_dim[in_idx]));
          }
        } while (in_idx < in_dim.size());
        in_dim.resize(dim_size);
        std::copy(tmp_dim.begin(), tmp_dim.end(), in_dim.begin());
      } else {
        do {
          if (in_dim[in_idx] == out_dims[in_idx] || in_dim[in_idx] == 1) {
            in_idx++;
          } else {
            PADDLE_THROW(paddle::platform::errors::InvalidArgument(
                "The %d-th dimension of input tensor is expected to be equal "
                "with the %d-th dimension of output tensor %d or 1, but "
                "recieved %d.",
                in_idx + 1,
                in_idx + 1,
                out_dims[in_idx],
                in_dim[in_idx]));
          }
        } while (in_idx < dim_size);
      }
      std::reverse(in_dim.begin(), in_dim.end());
    }
    std::reverse(out_dims.begin(), out_dims.end());
  }

  template <typename MergeFunctor>
  __inline__ void MergeDimensions(MergeFunctor merge_func, int N) {
    auto VectorReorganise = [](DimVector *vec, int l_idx, int m_idx) {
      (*vec)[m_idx - 1] = std::accumulate(vec->begin() + l_idx,
                                          vec->begin() + m_idx,
                                          1,
                                          std::multiplies<int64_t>());
      vec->erase(vec->begin() + l_idx, vec->begin() + m_idx - 1);
    };

    int64_t i = 0;
    while (i < dim_size) {
      int cnt = 0;
      int low_idx = i;
      bool equal = true;
      do {
        merge_func(equal, in_dims, out_dims, i, N);
        if (equal) {
          i++;
          cnt++;
        } else {
          break;
        }
      } while (i < dim_size);

      if (cnt > 1) {
        for (auto &in_dim : in_dims) {
          VectorReorganise(&in_dim, low_idx, i);
        }
        VectorReorganise(&out_dims, low_idx, i);
        dim_size -= --cnt;
        i -= cnt;
      } else if (cnt < 1) {
        i++;
      }
    }
  }

 public:
  explicit DimensionsTransform(const std::vector<const DenseTensor *> &ins,
                               const paddle::framework::DDim &dims,
                               int axis) {
    const int N = ins.size();
    dim_size = dims.size();
    out_dims = paddle::framework::vectorize<int64_t>(dims);
    in_dims.resize(N);
    for (int j = 0; j < N; ++j) {
      in_dims[j] = paddle::framework::vectorize<int64_t>(ins[j]->dims());
    }
    InputDimensionsExtend(N, axis);

    auto merge_sequential_dims = [](bool &equal,
                                    std::vector<DimVector> &in_dims,
                                    DimVector &out,
                                    int i,
                                    int num) {
      for (int j = 1; j < num; ++j) {
430
        equal &= (in_dims[0][i] == in_dims[j][i]) ? true : false;
431 432 433 434 435 436 437 438 439 440
      }
    };
    auto merge_sequential_one_dims = [](bool &equal,
                                        std::vector<DimVector> &in_dims,
                                        DimVector &out,
                                        int i,
                                        int num) {
      equal = in_dims[0][i] == 1;
      if (equal) {
        for (int j = 1; j < num; ++j) {
441
          equal &= in_dims[j][i] == out[i];
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
        }
      }
    };
    // To Merge the dimensions of input_tensors while the consequtive
    // equal-dimensions appears.
    MergeFunctor merge_ptr = merge_sequential_dims;
    MergeDimensions<MergeFunctor>(merge_ptr, N);

    int min_idx = 0;
    int min_val = std::accumulate(
        in_dims[0].begin(), in_dims[0].end(), 1, std::multiplies<int64_t>());
    for (int j = 1; j < N; ++j) {
      int temp = std::accumulate(
          in_dims[j].begin(), in_dims[j].end(), 1, std::multiplies<int64_t>());
      min_val = min_val > temp ? temp : min_val;
      min_idx = min_val == temp ? j : min_idx;
    }
    std::swap(in_dims[0], in_dims[min_idx]);

    // To Merge the dimension of input_tensors while the consequtive
    // 1-value-dimensions appears.
    merge_ptr = merge_sequential_one_dims;
    MergeDimensions<MergeFunctor>(merge_ptr, N);
    std::swap(in_dims[min_idx], in_dims[0]);
  }
};

template <typename T, int VecSize, int Rank, bool IsBoundary = false>
__device__ __forceinline__ void LoadData(
    T *dst,
472
    const _ptr_ T *src,
473 474 475 476
    uint32_t block_offset,
    const kps::details::BroadcastConfig<Rank> &config,
    int numel,
    int num,
477
    int need_broadcast) {
478 479 480 481 482 483 484 485 486 487 488 489 490 491
  // numel : whole num of output
  // num: how many data will be deal with in this time
  if (need_broadcast) {
    kps::ReadDataBc<T, VecSize, 1, 1, Rank, IsBoundary>(
        dst, src, block_offset, config, numel);
  } else {
    kps::ReadData<T, VecSize, 1, 1, IsBoundary>(dst, src + block_offset, num);
  }
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
492
          int NumOuts,
493 494 495
          int VecSize,
          int Rank,
          bool IsBoundary = false>
496
__device__ void ElementwiseBroadcastKernelImpl(
497 498 499
    const paddle::framework::Array<const _ptr_ InT *__restrict__, Arity> &ins,
    paddle::framework::Array<_ptr_ OutT *, NumOuts> outs,
    const paddle::framework::Array<int, Arity> &use_broadcast,
500 501 502 503
    uint32_t numel,
    const paddle::framework::Array<kps::details::BroadcastConfig<Rank>, Arity>
        &configs,
    int num,
504
    int block_offset,
505 506
    Functor func) {
  InT args[Arity][VecSize];
507
  ConditionalT<OutT, NumOuts> result[VecSize];
508 509 510 511 512 513 514 515 516 517 518 519

#pragma unroll
  for (int i = 0; i < Arity; i++) {
    kps::Init<InT, VecSize>(args[i], static_cast<InT>(1.0f));
    LoadData<InT, VecSize, Rank, IsBoundary>(args[i],
                                             ins[i],
                                             block_offset,
                                             configs[i],
                                             numel,
                                             num,
                                             use_broadcast[i]);
  }
520
  constexpr bool kCallElementwiseAny =
521 522
      paddle::platform::FunctionTraits<Functor>::has_pointer_args;
  ElementwisePrimitiveCaller<InT,
523
                             ConditionalT<OutT, NumOuts>,
524 525 526 527
                             VecSize,
                             Functor,
                             Arity,
                             kCallElementwiseAny>()(func, args, result);
528 529 530

  ElementwiseWriteDataCaller<OutT, VecSize, IsBoundary, NumOuts>()(
      outs, result, block_offset, num);
531 532 533 534 535 536
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
537
          int NumOuts,
538 539
          int VecSize,
          int Rank>
540
__global__ void ElementwiseBroadcastKernel(
541 542 543
    paddle::framework::Array<const _ptr_ InT *__restrict__, Arity> ins,
    paddle::framework::Array<_ptr_ OutT *, NumOuts> outs,
    paddle::framework::Array<int, Arity> use_broadcast,
544 545 546
    uint32_t numel,
    paddle::framework::Array<kps::details::BroadcastConfig<Rank>, Arity>
        configs,
547
    int main_offset,
548 549
    int tail_tid,
    Functor func) {
550 551
  int block_offset = BLOCK_ID_X * BLOCK_NUM_X * VecSize;
  int stride = BLOCK_NUM_X * GRID_NUM_X * VecSize;
552

553 554 555 556 557 558
#ifdef PADDLE_WITH_XPU2
  for (; block_offset < main_offset; block_offset += stride) {
    ElementwiseBroadcastKernelImpl<InT,
                                   OutT,
                                   Functor,
                                   Arity,
559
                                   NumOuts,
560 561 562
                                   VecSize,
                                   Rank,
                                   false>(ins,
563
                                          outs,
564 565 566 567 568 569 570
                                          use_broadcast,
                                          numel,
                                          configs,
                                          BLOCK_NUM_X * VecSize,
                                          block_offset,
                                          func);
  }
571 572
  int num = numel - block_offset;
  if (num > 0) {
573 574 575 576
    ElementwiseBroadcastKernelImpl<InT,
                                   OutT,
                                   Functor,
                                   Arity,
577
                                   NumOuts,
578 579 580
                                   VecSize,
                                   Rank,
                                   true>(
581
        ins, outs, use_broadcast, numel, configs, num, block_offset, func);
582
  }
583 584 585 586 587 588
#else
  if (block_offset < main_offset) {
    ElementwiseBroadcastKernelImpl<InT,
                                   OutT,
                                   Functor,
                                   Arity,
589
                                   NumOuts,
590 591 592
                                   VecSize,
                                   Rank,
                                   false>(ins,
593
                                          outs,
594 595 596 597 598 599 600 601 602 603 604
                                          use_broadcast,
                                          numel,
                                          configs,
                                          BLOCK_NUM_X * VecSize,
                                          block_offset,
                                          func);
  } else {
    ElementwiseBroadcastKernelImpl<InT,
                                   OutT,
                                   Functor,
                                   Arity,
605
                                   NumOuts,
606 607 608
                                   VecSize,
                                   Rank,
                                   true>(
609
        ins, outs, use_broadcast, numel, configs, tail_tid, block_offset, func);
610 611
  }
#endif
612 613 614 615 616 617
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
618
          int NumOuts,
619 620
          int VecSize,
          int Rank>
621
void LaunchKernel(const KPDevice &ctx,
622
                  const std::vector<const DenseTensor *> &ins,
623
                  std::vector<DenseTensor *> *outs,
624 625
                  Functor func,
                  DimensionsTransform merge_dims) {
626
  int numel = (*outs)[0]->numel();
627
  paddle::framework::Array<kps::details::BroadcastConfig<Rank>, Arity> configs;
628 629 630
  paddle::framework::Array<int, Arity> use_broadcast;
  paddle::framework::Array<const _ptr_ InT *__restrict__, Arity> ins_data;
  paddle::framework::Array<_ptr_ OutT *, NumOuts> outs_data;
631 632 633 634

  for (int i = 0; i < NumOuts; ++i) {
    outs_data[i] = (*outs)[i]->mutable_data<OutT>();
  }
635 636 637

  for (int i = 0; i < Arity; i++) {
    use_broadcast[i] = (ins[i]->numel() != numel);
638
    ins_data[i] = (_ptr_ InT *)(ins[i]->data<InT>());
639 640 641 642 643 644 645 646
    if (use_broadcast[i]) {
      // get the broadcast config,
      // if data shape is[m, n], then you should set data_dim = {n, m}
      // eg: out's shape [3, 45, 1]. then out_dims = {1, 45, 3}
      configs[i] = kps::details::BroadcastConfig<Rank>(
          merge_dims.out_dims, merge_dims.in_dims[i], merge_dims.dim_size);
    }
  }
647

648
#ifdef PADDLE_WITH_XPU2
649 650 651 652 653
  const int threads = 64;
  const int blocks = 8;
  int main_offset = (numel / (VecSize * threads)) * VecSize * threads;
  int tail_tid = numel % (VecSize * threads);
  auto stream = ctx.x_context()->xpu_stream;
654 655 656 657
  ElementwiseBroadcastKernel<InT,
                             OutT,
                             Functor,
                             Arity,
658
                             NumOuts,
659 660
                             VecSize,
                             Rank><<<blocks, threads, stream>>>(ins_data,
661
                                                                outs_data,
662 663 664 665 666 667 668
                                                                use_broadcast,
                                                                numel,
                                                                configs,
                                                                main_offset,
                                                                tail_tid,
                                                                func);
#else
669 670 671 672 673
  const int threads = 256;
  int blocks = ((numel + VecSize - 1) / VecSize + threads - 1) / threads;
  int main_offset = (numel / (VecSize * threads)) * VecSize * threads;
  int tail_tid = numel % (VecSize * threads);
  auto stream = ctx.stream();
674 675 676 677
  ElementwiseBroadcastKernel<InT,
                             OutT,
                             Functor,
                             Arity,
678
                             NumOuts,
679 680 681
                             VecSize,
                             Rank><<<blocks, threads, 0, stream>>>(
      ins_data,
682
      outs_data,
683 684 685 686 687 688 689
      use_broadcast,
      numel,
      configs,
      main_offset,
      tail_tid,
      func);
#endif
690 691
}

692 693 694 695 696 697
template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
          int NumOuts,
          int VecSize>
698
void LaunchBroadcastKernelForDifferentVecSize(
699
    const KPDevice &ctx,
700
    const std::vector<const DenseTensor *> &ins,
701
    std::vector<DenseTensor *> *outs,
702 703
    int axis,
    Functor func) {
704
  const auto merge_dims = DimensionsTransform(ins, (*outs)[0]->dims(), axis);
705

706 707 708 709
#define CALL_BROADCAST_FOR_DIM_SIZE(rank)                            \
  case rank: {                                                       \
    LaunchKernel<InT, OutT, Functor, Arity, NumOuts, VecSize, rank>( \
        ctx, ins, outs, func, merge_dims);                           \
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
  } break;

  switch (merge_dims.dim_size) {
    CALL_BROADCAST_FOR_DIM_SIZE(1);
    CALL_BROADCAST_FOR_DIM_SIZE(2);
    CALL_BROADCAST_FOR_DIM_SIZE(3);
    CALL_BROADCAST_FOR_DIM_SIZE(4);
    CALL_BROADCAST_FOR_DIM_SIZE(5);
    CALL_BROADCAST_FOR_DIM_SIZE(6);
    CALL_BROADCAST_FOR_DIM_SIZE(7);
    CALL_BROADCAST_FOR_DIM_SIZE(8);
    default: {
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "The maximum dimension of input tensor is expected to be less than "
          "%d, but recieved %d.\n",
          merge_dims.dim_size,
          paddle::framework::DDim::kMaxRank));
    }
  }
#undef CALL_BROADCAST_FOR_DIM_SIZE
}

732 733 734 735 736
template <ElementwiseType ET,
          typename InT,
          typename OutT,
          typename Functor,
          int NumOuts = 1>
737
void LaunchBroadcastElementwiseCudaKernel(
738
    const KPDevice &ctx,
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
    const std::vector<const DenseTensor *> &ins,
    std::vector<DenseTensor *> *outs,
    int axis,
    Functor func) {
  using Traits = paddle::platform::FunctionTraits<Functor>;
  const int kArity =
      Traits::has_pointer_args ? static_cast<int>(ET) : Traits::arity;
  PADDLE_ENFORCE_EQ(ins.size(),
                    kArity,
                    paddle::platform::errors::InvalidArgument(
                        "The number of inputs is expected to be equal to the "
                        "arity of functor. But recieved: the number of inputs "
                        "is %d, the arity of functor is %d.",
                        ins.size(),
                        kArity));
754
  PADDLE_ENFORCE_LE(kArity,
L
limingshu 已提交
755
                    3,
756
                    paddle::platform::errors::InvalidArgument(
757 758
                        "Currently only broadcast of ternary is supported "
                        "and verified, but received %d.",
759
                        kArity));
760 761 762 763 764 765 766
  PADDLE_ENFORCE_EQ(outs->size(),
                    NumOuts,
                    paddle::platform::errors::InvalidArgument(
                        "Number of outputs shall equal to number of functions, "
                        "but number of outputs is %d, of functions is %d.",
                        outs->size(),
                        NumOuts));
767
  int in_vec_size = 4;
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
  int out_vec_size = 4;
  if (NumOuts > 1) {
    for (int i = 0; i < NumOuts; ++i) {
      PADDLE_ENFORCE_EQ(
          (*outs)[i]->dims(),
          (*outs)[0]->dims(),
          paddle::platform::errors::InvalidArgument(
              "The shape of each output tensor shall be identical yet, but "
              "%dth output tensor`s shape is not.",
              i));
      out_vec_size = std::min(
          paddle::platform::GetVectorizedSize<OutT>((*outs)[i]->data<OutT>()),
          out_vec_size);
    }
  } else {
    out_vec_size =
        paddle::platform::GetVectorizedSize<OutT>((*outs)[0]->data<OutT>());
  }

787 788
  for (auto *in : ins) {
    auto temp_size = paddle::platform::GetVectorizedSize<InT>(in->data<InT>());
789 790 791
    in_vec_size = in->dims() == (*outs)[0]->dims()
                      ? std::min(temp_size, in_vec_size)
                      : in_vec_size;
792 793 794 795 796
  }
  int vec_size = std::min(out_vec_size, in_vec_size);

  switch (vec_size) {
    case 4: {
797 798 799 800 801 802
      LaunchBroadcastKernelForDifferentVecSize<InT,
                                               OutT,
                                               Functor,
                                               kArity,
                                               NumOuts,
                                               4>(ctx, ins, outs, axis, func);
803 804 805
      break;
    }
    case 2: {
806 807 808 809 810 811
      LaunchBroadcastKernelForDifferentVecSize<InT,
                                               OutT,
                                               Functor,
                                               kArity,
                                               NumOuts,
                                               2>(ctx, ins, outs, axis, func);
812 813 814
      break;
    }
    case 1: {
815 816 817 818 819 820
      LaunchBroadcastKernelForDifferentVecSize<InT,
                                               OutT,
                                               Functor,
                                               kArity,
                                               NumOuts,
                                               1>(ctx, ins, outs, axis, func);
821 822 823 824 825 826 827 828 829 830
      break;
    }
    default: {
      PADDLE_THROW(paddle::platform::errors::Unimplemented(
          "Unsupported vectorized size: %d !", vec_size));
      break;
    }
  }
}

831 832 833 834 835
template <ElementwiseType ET,
          typename InT,
          typename OutT,
          typename Functor,
          int NumOuts = 1>
836 837 838 839 840
void LaunchElementwiseCudaKernel(const KPDevice &ctx,
                                 const std::vector<const DenseTensor *> &ins,
                                 std::vector<DenseTensor *> *outs,
                                 int axis,
                                 Functor func) {
841 842 843 844 845 846 847 848
  std::vector<int> dims_size;
  bool no_broadcast_flag = true;
  for (auto *in : ins) {
    no_broadcast_flag &= ins[0]->dims() == in->dims();
    dims_size.emplace_back(in->dims().size());
  }
  if (no_broadcast_flag) {
    LaunchSameDimsElementwiseCudaKernel<ET, InT, OutT, Functor, NumOuts>(
849
        ctx, ins, outs, func);
850 851 852 853 854 855
  } else {
    axis = axis == -1
               ? *std::max_element(dims_size.begin(), dims_size.end()) -
                     *std::min_element(dims_size.begin(), dims_size.end())
               : axis;
    LaunchBroadcastElementwiseCudaKernel<ET, InT, OutT, Functor, NumOuts>(
856
        ctx, ins, outs, axis, func);
857 858 859
  }
}

860
}  // namespace pten