reduce_sum_grad_kernel.cc 4.7 KB
Newer Older
C
chentianyu03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/reduce_sum_grad_kernel.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cast_kernel.h"
#include "paddle/phi/kernels/cpu/reduce_grad.h"
#include "paddle/phi/kernels/empty_kernel.h"
namespace phi {

struct SumGradFunctor {
  template <typename DeviceContext,
            typename X,
            typename Y,
            typename DX,
            typename DY,
            typename Dim>
  void operator()(const DeviceContext& place,
                  X* x,
                  Y* y,
                  DX* dx,
                  DY* dy,
                  const Dim& dim,
                  int size) {
    dx->device(place) = dy->broadcast(dim);
  }
};

template <typename T, typename Context>
void ComputeFromInput(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& input2,
                      const std::vector<int64_t>& dims,
                      DenseTensor* x_grad) {
  auto* input0 = &x;
  auto* output = x_grad;
  dev_ctx.template Alloc<T>(output);

  const auto* input2_d = input2.data<T>();
  auto* output_d = output->data<T>();

  // handle reduce_all
  if (input2.dims().size() == 1 && input2.dims()[0] == 1) {
    for (int64_t i = 0; i < phi::product(input0->dims()); ++i) {
      output_d[i] = input2_d[0];
    }
    return;
  }

  // handle reduce by one dimension
  int reduce_dim_index = dims[0];
  if (reduce_dim_index < 0) {
    reduce_dim_index += input0->dims().size();
  }

  auto& input_dim = input0->dims();
  int64_t before_dim = 1;
  for (int i = 0; i < reduce_dim_index; ++i) {
    before_dim *= input_dim[i];
  }
  int64_t reduce_dim = input_dim[reduce_dim_index];
  int64_t after_dim = 1;
  for (int i = reduce_dim_index + 1; i < input_dim.size(); ++i) {
    after_dim *= input_dim[i];
  }
  for (int64_t i = 0; i < before_dim; ++i) {
    for (int64_t j = 0; j < reduce_dim; ++j) {
      for (int64_t k = 0; k < after_dim; ++k) {
        output_d[i * reduce_dim * after_dim + j * after_dim + k] =
            input2_d[i * after_dim + k];
      }
    }
  }
}

template <typename T, typename Context>
void ReduceSumGradKernel(const Context& dev_ctx,
                         const DenseTensor& x,
                         const DenseTensor& out_grad,
                         const std::vector<int64_t>& dims,
                         bool keep_dim,
                         bool reduce_all,
                         DataType in_dtype,
                         DataType out_dtype,
                         DenseTensor* x_grad) {
  if (dims.size() == 1) {
    if (out_dtype != DataType::UNDEFINED) {
      DenseTensorMeta x_grad_meta(out_dtype, x_grad->dims(), x_grad->layout());
      DenseTensor x_grad_tmp =
          phi::Empty<Context>(dev_ctx, std::move(x_grad_meta));

      ComputeFromInput<T, Context>(dev_ctx, x, out_grad, dims, &x_grad_tmp);

      phi::CastKernel<T>(dev_ctx, x_grad_tmp, in_dtype, x_grad);

    } else {
      ComputeFromInput<T, Context>(dev_ctx, x, out_grad, dims, x_grad);
    }
  }

  ReduceGradKernel<Context, T, SumGradFunctor, true>(dev_ctx,
                                                     x,
                                                     out_grad,
                                                     paddle::none,
                                                     dims,
                                                     keep_dim,
                                                     reduce_all,
                                                     in_dtype,
                                                     out_dtype,
                                                     x_grad);
}

}  // namespace phi

PD_REGISTER_KERNEL(sum_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::ReduceSumGradKernel,
                   bool,
                   float,
                   double,
                   phi::dtype::float16,
                   int,
                   int64_t,
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}