sparse_api_gen.py 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import argparse
import re

20
from api_gen import ForwardAPI
21 22


23
class SparseAPI(ForwardAPI):
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    def __init__(self, api_item_yaml):
        super(SparseAPI, self).__init__(api_item_yaml)

    def get_api_name(self, api_item_yaml):
        return api_item_yaml['sparse_api']

    def get_api_func_name(self):
        return self.api

    def gene_api_declaration(self):
        return f"""
// {", ".join(self.outputs['names'])}
PADDLE_API {self.outputs['return_type']} {self.get_api_func_name()}({self.args_str['args_declare']});
"""

    def get_kernel_tensor_out_type(self, output_name):
        sparse_type = 'TensorType::DENSE_TENSOR'
        if output_name.endswith('@SparseCooTensor'):
            sparse_type = 'TensorType::SPARSE_COO'
        elif output_name.endswith('@SparseCsrTensor'):
            sparse_type = 'TensorType::SPARSE_CSR'
        return sparse_type

    def gene_output(self,
                    output_type_list,
                    set_out_func,
                    code_indent,
                    inplace_flag=False):
        kernel_output = ""
        output_names = []
        output_create = ""

        if len(output_type_list) == 1:
            kernel_output = 'kernel_out'
            output_names.append('kernel_out')
            inplace_assign = " = " + self.inplace_map[self.outputs['names'][
                0]] if inplace_flag and self.inplace_map is not None and self.outputs[
                    'names'][0] in self.inplace_map else ""
            output_create = f"""
  {self.outputs['return_type']} out{inplace_assign};
  auto* kernel_out = {set_out_func}(&out, {self.get_kernel_tensor_out_type(self.outputs['names'][0])});"""

        elif len(output_type_list) > 1:
            output_create = f"""
  {self.outputs['return_type']} out;"""

            for i in range(len(output_type_list)):
                kernel_output = kernel_output + f'kernel_out_{i}, '
                output_names.append(f'kernel_out_{i}')
                if inplace_flag and self.inplace_map is not None and self.outputs[
                        'names'][i] in self.inplace_map:
                    output_create = output_create + f"""
  std::get<{i}>(out) = {self.inplace_map[self.outputs['names'][i]]};"""

                output_create = output_create + f"""
  auto* kernel_out_{i} = {set_out_func}(&std::get<{i}>(out), {self.get_kernel_tensor_out_type(self.outputs['names'][i])});"""

            kernel_output = kernel_output[:-2]
        else:
            raise ValueError(
                "{} : Output error: the output should not be empty.".format(
                    self.api))

        return kernel_output, output_names, output_create

    def gen_sparse_kernel_context(self, kernel_output_names):
        input_trans_map = {
            'const Tensor&': 'const phi::TenseBase&',
            'const std::vector<Tensor>&': 'const std::vector<phi::TenseBase>&',
            'const paddle::optional<Tensor>&':
            'paddle::optional<const phi::TenseBase&>'
        }
        out_trans_map = {
            'Tensor': 'phi::TenseBase*',
            'std::vector<Tensor>': 'std::vector<phi::TenseBase*>'
        }
        input_names = self.inputs['names']
        input_infos = self.inputs['input_info']

        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

        kernel_context_code = ""
        for param in kernel_param:
            if param in input_names:
                if param in self.optional_vars:
                    raise ValueError(
                        f"{self.api} : Unsupport optional input({param}) for sparse api."
                    )
                else:
                    kernel_context_code = kernel_context_code + f"""
  kernel_context.EmplaceBackInput({param}.impl().get());"""

                continue
            if param in attr_names:
                # set attr for kernel_context
                if 'ScalarArray' in self.attrs['attr_info'][param][0]:
                    param = 'phi::ScalarArray(' + param + ')'
                elif 'Scalar' in self.attrs['attr_info'][param][0]:
                    param = 'phi::Scalar(' + param + ')'
            elif isinstance(param, bool):
                param = str(param).lower()
            else:
                param + str(param) + ", "
            kernel_context_code = kernel_context_code + f"""
  kernel_context.EmplaceBackAttr({param});"""

        for out_name in kernel_output_names:
            kernel_context_code = kernel_context_code + f"""
  kernel_context.EmplaceBackOutput({out_name});"""

        return kernel_context_code

    def gen_sparse_kernel_code(self, inplace_flag=False):
        _, kernel_output_names, output_create = self.gene_output(
            self.outputs['types'], 'SetSparseKernelOutput', '', inplace_flag)

        kernel_context_code = self.gen_sparse_kernel_context(
            kernel_output_names)

        return f"""
  auto phi_kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "{self.kernel['func'][0]}", {{kernel_backend, kernel_layout, kernel_data_type}});
  VLOG(6) << "{self.api} api sparse kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]";
  VLOG(6) << "{self.api} api sparse kernel: " << phi_kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);
  auto kernel_context = phi::KernelContext(dev_ctx);
{output_create}
{kernel_context_code}
  phi_kernel(&kernel_context);

  return out;"""

    def gene_base_api_code(self, inplace_flag=False):
        api_func_name = self.get_api_func_name()
        return f"""
PADDLE_API {self.outputs['return_type']} {api_func_name}({self.args_str["args_define"]}) {{
{self.gene_kernel_select()}
{self.gen_sparse_kernel_code(inplace_flag)}
}}
"""


def header_include():
    return """
#include <tuple>

#include "paddle/phi/api/include/tensor.h"
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/common/scalar_array.h"
#include "paddle/utils/optional.h"
"""


def source_include(header_file_path):
    return f"""
#include "{header_file_path}"
#include <memory>

#include "glog/logging.h"

#include "paddle/phi/api/lib/api_registry.h"
#include "paddle/phi/api/lib/api_gen_utils.h"
#include "paddle/phi/api/lib/data_transform.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
#include "paddle/phi/api/lib/sparse_api_custom_impl.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/declarations.h"
"""


def api_register():
    return """
PD_REGISTER_API(Test);
"""


def api_namespace():
    return ("""
namespace paddle {
namespace experimental {
namespace sparse {

""", """

}  // namespace sparse
}  // namespace experimental
}  // namespace paddle
""")


def generate_api(api_yaml_path, header_file_path, source_file_path):

    with open(api_yaml_path, 'r') as f:
        apis = yaml.load(f, Loader=yaml.FullLoader)
    header_file = open(header_file_path, 'w')
    source_file = open(source_file_path, 'w')

    namespace = api_namespace()

    header_file.write("#pragma once\n")
    header_file.write(header_include())
    header_file.write(namespace[0])

    include_header_file = "paddle/phi/api/include/sparse_api.h"
    source_file.write(source_include(include_header_file))
    source_file.write(namespace[0])

    for api in apis:
        sparse_api = SparseAPI(api)
        header_file.write(sparse_api.gene_api_declaration())
        source_file.write(sparse_api.gene_api_code())

    header_file.write(namespace[1])
    source_file.write(namespace[1])

    source_file.write(api_register())

    header_file.close()
    source_file.close()


def main():
    parser = argparse.ArgumentParser(
        description='Generate PaddlePaddle C++ Sparse API files')
    parser.add_argument(
        '--api_yaml_path',
        help='path to sparse api yaml file',
        default='python/paddle/utils/code_gen/sparse_api.yaml')

    parser.add_argument(
        '--api_header_path',
        help='output of generated api header code file',
        default='paddle/phi/api/include/sparse_api.h')

    parser.add_argument(
        '--api_source_path',
        help='output of generated api source code file',
        default='paddle/phi/api/lib/sparse_api.cc')

    options = parser.parse_args()

    api_yaml_path = options.api_yaml_path
    header_file_path = options.api_header_path
    source_file_path = options.api_source_path

    generate_api(api_yaml_path, header_file_path, source_file_path)


if __name__ == '__main__':
    main()