nn.py 134.8 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce
from .. import core
from ..layers import utils
20
from ..layers import nn as F
21
from .. import dygraph_utils
M
minqiyang 已提交
22
from . import layers
23
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter, _dygraph_tracer, _varbase_creator, default_main_program
24
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
M
minqiyang 已提交
25
from ..param_attr import ParamAttr
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
27 28
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
29
from ..data_feeder import check_variable_and_dtype, check_type
L
lujun 已提交
30
import numpy as np
31
import numbers
32
import logging
33

34
__all__ = [
35
    'Conv2D', 'Conv3D', 'Pool2D', 'Linear', 'BatchNorm', 'Dropout', 'Embedding',
36 37
    'GRUUnit', 'InstanceNorm', 'LayerNorm', 'NCE', 'PRelu',
    'BilinearTensorProduct', 'Conv2DTranspose', 'Conv3DTranspose', 'GroupNorm',
38
    'SpectralNorm', 'TreeConv', 'Flatten'
39
]
M
minqiyang 已提交
40 41


X
Xin Pan 已提交
42
class Conv2D(layers.Layer):
43
    """
44 45
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
46 47 48
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
49 50 51
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
52
    and W is the width of the filter. If the groups is greater than 1,
53
    C will equal the number of input feature map divided by the groups.
54
    Please refer to UFLDL's `convolution
55
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
T
tianshuo78520a 已提交
56
    for more details.
57 58 59 60 61 62 63 64
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

65
        Out = \\sigma (W \\ast X + b)
66 67 68

    Where:

69 70
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
71
    * :math:`\\ast`: Convolution operation.
72
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

95
    Parameters:
96
        num_channels(int): The number of channels in the input image.
97
        num_filters(int): The number of filter. It is as same as the output
98 99
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
100 101
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
102
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
103
            contain two integers, (stride_H, stride_W). Otherwise, the
104 105
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
106
            contain two integers, (padding_H, padding_W). Otherwise, the
107 108
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
109
            contain two integers, (dilation_H, dilation_W). Otherwise, the
110 111
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
112 113 114
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
115 116
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
117 118 119 120
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
121
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
122 123 124 125
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
126 127 128 129 130
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
131

132 133 134 135
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
136

137 138 139
    Returns:
        None
    
140
    Raises:
141
        ValueError: if ``use_cudnn`` is not a bool value.
142 143 144

    Examples:
        .. code-block:: python
L
lujun 已提交
145

146 147 148 149 150
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

151
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
152
          with fluid.dygraph.guard():
153
              conv2d = Conv2D(3, 2, 3)
154 155
              data = to_variable(data)
              conv = conv2d(data)
156 157 158

    """

M
minqiyang 已提交
159
    def __init__(self,
160
                 num_channels,
M
minqiyang 已提交
161 162 163 164 165 166 167 168
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
169 170 171
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
172
        assert param_attr is not False, "param_attr should not be False here."
173 174
        super(Conv2D, self).__init__()
        self._num_channels = num_channels
M
minqiyang 已提交
175 176 177 178
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
179
        self._act = act
M
minqiyang 已提交
180 181 182
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
183
        self._use_mkldnn = core.globals()["FLAGS_use_mkldnn"]
184 185 186 187 188
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
189

190
        if (self._num_channels == self._groups and
191 192
                num_filters % self._num_channels == 0 and
                not self._use_cudnn and not self._use_mkldnn):
193 194 195
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'
M
minqiyang 已提交
196

197
        self._num_channels = num_channels
198 199
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
200
        else:
201
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
202
                raise ValueError("num_channels must be divisible by groups.")
203 204
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
205
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
206 207

        def _get_default_param_initializer():
208 209
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
210 211 212
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

213
        self.weight = self.create_parameter(
214
            attr=self._param_attr,
M
minqiyang 已提交
215 216 217 218
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

219
        self.bias = self.create_parameter(
220 221
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
222 223
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
224 225

    def forward(self, input):
226 227 228
        if in_dygraph_mode() and self._l_type == 'conv2d':
            attrs = ('strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups
229 230
                     if self._groups else 1, 'use_cudnn', self._use_cudnn,
                     'use_mkldnn', self._use_mkldnn)
231 232 233
            out = core.ops.conv2d(input, self.weight, *attrs)
            pre_bias = out

234 235 236 237
            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, 1, use_mkldnn=self._use_mkldnn)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)
238 239
        inputs = {
            'Input': [input],
240
            'Filter': [self.weight],
241 242 243 244 245 246 247
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
248
            'use_mkldnn': self._use_mkldnn,
249
        }
250 251 252

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'Conv2D')
M
minqiyang 已提交
253 254 255
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
256 257 258 259
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
260
                'Filter': self.weight,
M
minqiyang 已提交
261
            },
M
minqiyang 已提交
262
            outputs={"Output": pre_bias},
263
            attrs=attrs)
M
minqiyang 已提交
264

265
        if self.bias is not None:
266 267 268 269 270
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
271
                        'Y': [self.bias]},
272
                outputs={'Out': [pre_act]},
273 274
                attrs={'axis': 1,
                       'use_mkldnn': self._use_mkldnn})
275 276
        else:
            pre_act = pre_bias
M
minqiyang 已提交
277

L
lujun 已提交
278
        # Currently, we don't support inplace in dygraph mode
279
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
280 281


L
lujun 已提交
282
class Conv3D(layers.Layer):
283 284 285 286 287
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
288 289
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
290 291 292 293 294 295 296 297 298 299 300 301 302 303
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
304
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

330
    Parameters:
331
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
332
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
333
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
334
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
335 336 337
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
338
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
339 340
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
341
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
342 343
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
344
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
345 346
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups (int, optional): The groups number of the Conv3d Layer. According to grouped
347 348 349
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
350 351
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
352 353 354
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
355 356
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
357 358 359
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
360 361 362 363 364
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
365
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
366

D
DuYao 已提交
367 368 369 370
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
371

372
    Returns:
D
DuYao 已提交
373
        None.
374 375 376 377 378 379 380 381

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

382 383 384 385 386 387
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
388
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
389 390
              ret = conv3d(fluid.dygraph.base.to_variable(data))

391 392
    """

L
lujun 已提交
393
    def __init__(self,
394
                 num_channels,
L
lujun 已提交
395 396 397 398 399 400 401 402 403
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
404 405
                 act=None,
                 dtype='float32'):
L
lujun 已提交
406
        assert param_attr is not False, "param_attr should not be False here."
407 408
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
409 410 411
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
412
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
413 414
        self._act = act
        self._use_cudnn = use_cudnn
415 416 417 418
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
419
        self._dtype = dtype
420 421

        if self._groups is None:
422
            num_filter_channels = self._num_channels
L
lujun 已提交
423
        else:
424
            if self._num_channels % self._groups != 0:
L
lujun 已提交
425
                raise ValueError("num_channels must be divisible by groups.")
426
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
427

428 429
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
430 431 432

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
433
                2] * self._num_channels
L
lujun 已提交
434 435 436
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

437
        self.weight = self.create_parameter(
438
            attr=self._param_attr,
L
lujun 已提交
439 440 441 442
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

443
        self.bias = self.create_parameter(
444 445
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
446 447 448 449 450 451 452 453
            dtype=self._dtype,
            is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
454
            type='conv3d',
L
lujun 已提交
455 456
            inputs={
                'Input': input,
457
                'Filter': self.weight,
L
lujun 已提交
458 459 460 461 462 463 464 465 466 467 468
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

469
        if self.bias is not None:
470 471 472 473 474
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
475
                        'Y': [self.bias]},
476 477 478 479
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
L
lujun 已提交
480 481 482 483 484

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
L
lujun 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
    """
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
550

551
    Parameters:
552
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
553 554
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
555
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
556
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
557
            Otherwise, the filter will be a square.
D
DuYao 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
573
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
574 575
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
L
lujun 已提交
576 577 578 579
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
580 581
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
582 583
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
584 585
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
586 587 588
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
589 590 591 592 593 594 595
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
596

D
DuYao 已提交
597 598 599 600
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
601

L
lujun 已提交
602
    Returns:
D
DuYao 已提交
603
        None.
L
lujun 已提交
604 605 606 607 608 609 610 611

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

612 613 614 615 616 617
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
618
                    num_channels=3,
619 620 621 622 623
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
624 625
    """

L
lujun 已提交
626
    def __init__(self,
627
                 num_channels,
L
lujun 已提交
628
                 num_filters,
629
                 filter_size,
L
lujun 已提交
630 631 632 633 634 635 636 637
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
638 639
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
640 641 642 643 644 645 646
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
647
        self._num_channels = num_channels
L
lujun 已提交
648 649 650 651 652 653
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
654
        self._dtype = dtype
L
lujun 已提交
655

656 657
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
658

659 660
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
661
        self.weight = self.create_parameter(
L
lujun 已提交
662
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
663 664 665 666 667
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
668 669 670 671 672 673 674

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
675
                    'Filter': [self.weight]},
L
lujun 已提交
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
691
                        'Y': [self.bias]},
L
lujun 已提交
692 693 694 695 696 697 698 699 700
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
701
class Pool2D(layers.Layer):
702
    """
703 704 705 706
    :alias_main: paddle.nn.Pool2D
	:alias: paddle.nn.Pool2D,paddle.nn.layer.Pool2D,paddle.nn.layer.common.Pool2D
	:old_api: paddle.fluid.dygraph.Pool2D

707 708 709 710 711
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
712 713
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
714

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

759
    Parameters:
760
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
761
            it must contain two integers, (pool_size_Height, pool_size_Width).
762 763 764 765
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
766
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
767 768 769
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
770
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
771 772 773 774 775 776 777
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
778 779 780 781
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            ``[batch_size, input_channels, input_height, input_width]``. When it is `"NHWC"`, the data is 
            stored in the order of: ``[batch_size, input_height, input_width, input_channels]``
782 783

    Returns:
784
        None
785 786

    Raises:
787 788 789 790
        ValueError: If ``pool_type`` is not "max" nor "avg".
        ValueError: If ``global_pooling`` is False and ``pool_size`` is -1.
        ValueError: If ``use_cudnn`` is not a bool value.
        ValueError: If ``data_format`` is not "NCHW" nor "NHWC".
791 792 793 794 795

    Examples:

        .. code-block:: python

L
lujun 已提交
796
          import paddle.fluid as fluid
797 798
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
799 800

          with fluid.dygraph.guard():
801
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
802
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
803 804 805
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
806
             pool2d_res = pool2d(to_variable(data))
807 808 809

    """

M
minqiyang 已提交
810 811 812 813 814 815 816 817
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
818 819 820 821
                 exclusive=True,
                 data_format="NCHW"):
        data_format = data_format.upper()  # supprt NHWC, nhwc, etc.
        pool_type = pool_type.lower()  # supprt max, Max, etc.
M
minqiyang 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

835 836
        self._use_mkldnn = core.globals()["FLAGS_use_mkldnn"]

837 838 839 840 841
        if data_format not in ["NCHW", "NHWC"]:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s." % str(data_format))

842
        super(Pool2D, self).__init__()
M
minqiyang 已提交
843 844 845 846 847 848 849 850 851 852

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
853
        self._data_format = data_format
M
minqiyang 已提交
854 855 856
        self._l_type = 'pool2d'

    def forward(self, input):
857 858 859 860 861
        if in_dygraph_mode():
            attrs = ('pooling_type', self._pool_type, 'ksize', self._pool_size,
                     'global_pooling', self._global_pooling, 'strides',
                     self._pool_stride, 'paddings', self._pool_padding,
                     'use_cudnn', self._use_cudnn, 'ceil_mode', self._ceil_mode,
862 863
                     'use_mkldnn', self._use_mkldnn, 'exclusive',
                     self._exclusive, 'data_format', self._data_format)
864 865
            return core.ops.pool2d(input, *attrs)

866 867 868 869
        check_variable_and_dtype(
            input, 'input', ['int8', 'uint8', 'float16', 'float32', 'float64'],
            'Pool2D')

870 871 872 873 874 875 876 877
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
878
            "use_mkldnn": self._use_mkldnn,
879
            "exclusive": self._exclusive,
880
            "data_format": self._data_format,
881 882 883
        }
        inputs = {"X": [input]}

M
minqiyang 已提交
884 885
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
886 887 888
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
889
            outputs={"Out": pool_out},
890
            attrs=attrs)
M
minqiyang 已提交
891
        return pool_out
M
minqiyang 已提交
892 893


S
songyouwei 已提交
894 895
class Linear(layers.Layer):
    """
896 897 898 899
    :alias_main: paddle.nn.Linear
	:alias: paddle.nn.Linear,paddle.nn.layer.Linear,paddle.nn.layer.common.Linear
	:old_api: paddle.fluid.dygraph.Linear
    
S
songyouwei 已提交
900 901 902 903 904 905 906 907
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

908
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True)

967 968
        self._use_mkldnn = core.globals()["FLAGS_use_mkldnn"]

S
songyouwei 已提交
969
    def forward(self, input):
970
        if in_dygraph_mode():
971 972
            pre_bias = _varbase_creator(dtype=input.dtype)
            core.ops.matmul(input, self.weight, pre_bias, 'transpose_X', False,
973 974
                            'transpose_Y', False, "alpha", 1, "use_mkldnn",
                            self._use_mkldnn)
975
            pre_act = dygraph_utils._append_bias_in_dygraph(
976 977 978 979
                pre_bias,
                self.bias,
                axis=len(input.shape) - 1,
                use_mkldnn=self._use_mkldnn)
980

981 982
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)
983 984 985 986

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], "Linear")

987
        attrs = {
S
songyouwei 已提交
988 989 990
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
991
            "use_mkldnn": self._use_mkldnn,
992 993
        }
        inputs = {"X": [input], "Y": [self.weight]}
994

S
songyouwei 已提交
995 996
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
S
songyouwei 已提交
997
            type="matmul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs)
998
        if self.bias is not None:
S
songyouwei 已提交
999 1000 1001 1002 1003 1004 1005
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
1006 1007 1008 1009
                attrs={
                    'axis': len(input.shape) - 1,
                    'use_mkldnn': self._use_mkldnn
                })
S
songyouwei 已提交
1010 1011 1012 1013 1014
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
class InstanceNorm(layers.Layer):
    """
    This interface is used to construct a callable object of the ``InstanceNorm`` class.
    For more details, refer to code examples.

    Can be used as a normalizer function for convolution or fully_connected operations.
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::
        
        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Parameters:
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
ceci3 已提交
1047
        param_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
1048 1049 1050
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
C
ceci3 已提交
1051 1052
	     one. If it is set to False, will not create param_attr. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
1053 1054 1055
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
C
ceci3 已提交
1056
             If it is set to False, will not create bias_attr. Default: None.
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
          import paddle

          # x's shape is [1, 3, 1, 2] 
          x = np.array([[[[1.0, 8.0]], [[10.0, 5.0]], [[4.0, 6.0]]]]).astype('float32')
          with fluid.dygraph.guard():
              x = to_variable(x)
              instanceNorm = paddle.nn.InstanceNorm(3)
              ret = instanceNorm(x)
              # ret's shape is [1, 3, 1, 2]; value is [-1 1 0.999999 -0.999999 -0.999995 0.999995] 
              print(ret)

    """

    def __init__(self,
                 num_channels,
                 epsilon=1e-5,
                 param_attr=None,
                 bias_attr=None,
                 dtype='float32'):
        super(InstanceNorm, self).__init__()

C
ceci3 已提交
1091 1092
        if param_attr == False or bias_attr == False:
            assert bias_attr == param_attr, "param_attr and bias_attr must be set to Fasle at the same time in InstanceNorm"
1093 1094 1095 1096 1097
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype

C
ceci3 已提交
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
        if param_attr != False and bias_attr != False:
            self.scale = self.create_parameter(
                attr=self._param_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(1.0),
                is_bias=False)
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(0.0),
                is_bias=True)
        else:
            self.scale = None
            self.bias = None
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125

    def forward(self, input):
        if in_dygraph_mode():
            out, _, _ = core.ops.instance_norm(input, self.scale, self.bias,
                                               'epsilon', self._epsilon)
            return out

        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 "InstanceNorm")

        attrs = {"epsilon": self._epsilon}

C
ceci3 已提交
1126 1127 1128 1129
        if self.scale and self.bias:
            inputs = {"X": [input], "Scale": [self.scale], "Bias": [self.bias]}
        else:
            inputs = {"X": [input]}
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148

        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        instance_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        outputs = {
            "Y": [instance_norm_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

        self._helper.append_op(
            type="instance_norm", inputs=inputs, outputs=outputs, attrs=attrs)
        return instance_norm_out


M
minqiyang 已提交
1149
class BatchNorm(layers.Layer):
1150
    """
1151 1152 1153 1154
    :alias_main: paddle.nn.BatchNorm
	:alias: paddle.nn.BatchNorm,paddle.nn.layer.BatchNorm,paddle.nn.layer.norm.BatchNorm
	:old_api: paddle.fluid.dygraph.BatchNorm

1155 1156 1157 1158 1159
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
1160 1161 1162 1163
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1164 1165 1166
    When use_global_stats = False, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:
1167 1168 1169 1170 1171 1172 1173 1174

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

1175 1176
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
1177 1178 1179

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
1180 1181 1182 1183 1184 1185
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
1186

1187 1188
    The normalization function formula is as follows:
 
1189 1190 1191
    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
1192 1193 1194 1195 1196 1197
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter
1198

1199
    Parameters:
1200
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
T
tianshuo78520a 已提交
1201
        act(str, optional): Activation to be applied to the output of batch normalization. Default: None.
1202 1203 1204
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
             This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
             Default: False.
1205 1206 1207
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1208 1209 1210
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1211
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1212 1213 1214
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1215 1216 1217 1218 1219 1220
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1221 1222
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1223
        use_global_stats(bool, optional): Whether to use global mean and
1224 1225 1226
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1227 1228 1229 1230
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1231 1232

    Returns:
1233
        None
1234 1235 1236

    Examples:
        .. code-block:: python
L
lujun 已提交
1237 1238

          import paddle.fluid as fluid
1239 1240
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1241

1242
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1243
          with fluid.dygraph.guard():
1244
              x = to_variable(x)
1245
              batch_norm = fluid.BatchNorm(10)
1246
              hidden1 = batch_norm(x)
1247 1248
    """

M
minqiyang 已提交
1249 1250 1251 1252 1253 1254 1255 1256
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1257
                 dtype='float32',
M
minqiyang 已提交
1258 1259 1260 1261
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1262
                 do_model_average_for_mean_and_var=True,
1263 1264
                 use_global_stats=False,
                 trainable_statistics=False):
1265
        super(BatchNorm, self).__init__()
1266
        self._param_attr = param_attr
1267
        self._bias_attr = bias_attr
1268
        self._act = act
1269
        self._use_mkldnn = core.globals()["FLAGS_use_mkldnn"]
M
minqiyang 已提交
1270 1271 1272

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1273 1274
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1275 1276 1277 1278 1279 1280
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1281
        self.weight = self.create_parameter(
1282
            attr=self._param_attr,
M
minqiyang 已提交
1283 1284 1285
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1286
        self.weight.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1287

1288
        self.bias = self.create_parameter(
1289
            attr=self._bias_attr,
M
minqiyang 已提交
1290 1291 1292
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1293
        self.bias.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1294

1295
        self._mean = self.create_parameter(
M
minqiyang 已提交
1296 1297 1298 1299 1300 1301 1302
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1303
        self._mean.stop_gradient = True
M
minqiyang 已提交
1304

1305
        self._variance = self.create_parameter(
M
minqiyang 已提交
1306 1307 1308 1309 1310 1311 1312
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1313
        self._variance.stop_gradient = True
M
minqiyang 已提交
1314 1315

        self._in_place = in_place
1316
        self._data_layout = data_layout
M
minqiyang 已提交
1317 1318 1319
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1320
        self._fuse_with_relu = False
M
minqiyang 已提交
1321
        self._use_global_stats = use_global_stats
1322
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1323 1324 1325 1326 1327 1328 1329

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance
1330 1331 1332

        if in_dygraph_mode():
            attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
1333
                     "is_test", not self.training, "data_layout",
1334 1335
                     self._data_layout, "use_mkldnn", self._use_mkldnn,
                     "fuse_with_relu", self._fuse_with_relu, "use_global_stats",
1336 1337
                     self._use_global_stats, 'trainable_statistics',
                     self._trainable_statistics)
1338
            batch_norm_out, _, _, _, _, _ = core.ops.batch_norm(
1339 1340
                input, self.weight, self.bias, self._mean, self._variance,
                mean_out, variance_out, *attrs)
1341

1342
            return dygraph_utils._append_activation_in_dygraph(
1343
                batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn)
1344

1345 1346 1347
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'BatchNorm')

1348 1349 1350 1351 1352 1353 1354
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
1355 1356
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics,
1357
        }
M
minqiyang 已提交
1358

1359 1360 1361 1362 1363 1364 1365 1366
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

1367 1368 1369 1370 1371 1372
        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
            self._dtype)
1373 1374 1375 1376 1377 1378 1379 1380 1381

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

M
minqiyang 已提交
1382
        self._helper.append_op(
1383
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
M
minqiyang 已提交
1384

L
lujun 已提交
1385
        # Currently, we don't support inplace in dygraph mode
1386
        return self._helper.append_activation(batch_norm_out, self._act)
1387 1388


1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
class Dropout(layers.Layer):
    """
   This interface is used to construct a callable object of the ``Dropout`` class.
   For more details, refer to code examples.

   Drop or keep each element of input independently. Dropout is a regularization
   technique for reducing overfitting by preventing neuron co-adaption during
   training. The dropout operator randomly sets (according to the given dropout
   probability) the outputs of some units to zero, while others are remain
   unchanged.

   Dropout layer can be removed for efficiency concern.

   Parameters:
       p (float, optional): Probability of setting units to zero. Default: 0.5
       seed (int, optional): A Python integer used to create random seeds. If this
                   parameter is set to None, a random seed is used.
                   NOTE: If an integer seed is given, always the same output
                   units will be dropped. DO NOT use a fixed seed in training. Default: None.
       dropout_implementation(string, optional): ['downgrade_in_infer'(default)|'upscale_in_train']

                                       1. downgrade_in_infer(default), downgrade the outcome at inference

                                          - train: out = input * mask
                                          - inference: out = input * (1.0 - p)

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is dropout_prob)
                                       2. upscale_in_train, upscale the outcome at training time

                                          - train: out = input * mask / ( 1.0 - p )
                                          - inference: out = input

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is p)
       is_test (bool, optional): A flag indicating whether it is in test phrase or not.
                   This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
                   Default: False.

   Returns:
       None

   Examples:

       .. code-block:: python

           import paddle.fluid as fluid
           from paddle.fluid.dygraph.base import to_variable
           import numpy as np

           x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
           with fluid.dygraph.guard():
               x = to_variable(x)
               m = fluid.dygraph.Dropout(p=0.5)
               droped_train = m(x)
               # switch to eval mode
               m.eval()
               droped_eval = m(x)
   """

    def __init__(self,
                 p=0.5,
                 seed=None,
                 dropout_implementation="downgrade_in_infer",
                 is_test=False):
        super(Dropout, self).__init__()
        assert isinstance(p, (float, int)), "p argument should be a number"
        assert 0 <= p <= 1, "p argument should between 0 and 1"
        self._dropout_prob = p
        assert seed is None or isinstance(
            seed, int), "seed argument should be None or a integer"
        self._seed = seed
        assert dropout_implementation in (
            'downgrade_in_infer', 'upscale_in_train'
        ), "dropout_implementation argument should be 'downgrade_in_infer' or 'upscale_in_train'"
        self._dropout_implementation = dropout_implementation
        self._is_test = is_test

    def forward(self, input):
        prog = default_main_program()
        if (self._seed is None or self._seed == 0) and prog.random_seed != 0:
            self._seed = prog.random_seed
        attrs = {
            'dropout_prob': self._dropout_prob,
            'is_test': not self.training
            if in_dygraph_mode() else self._is_test,
            'fix_seed': self._seed is not None,
            'seed': self._seed if self._seed is not None else 0,
            'dropout_implementation': self._dropout_implementation,
        }

        if in_dygraph_mode():
            attrs = sum(attrs.items(), ())
            out, mask = core.ops.dropout(input, *attrs)
            return out

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        mask = self._helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)

        self._helper.append_op(
            type='dropout',
            inputs={'X': [input]},
            outputs={'Out': [out],
                     'Mask': [mask]},
            attrs=attrs)
        return out


1498 1499
class Embedding(layers.Layer):
    """
1500 1501 1502 1503
    :alias_main: paddle.nn.Embedding
	:alias: paddle.nn.Embedding,paddle.nn.layer.Embedding,paddle.nn.layer.common.Embedding
	:old_api: paddle.fluid.dygraph.Embedding

1504 1505
    **Embedding Layer**

Z
zhongpu 已提交
1506 1507 1508 1509 1510 1511
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1512 1513
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1514

1515
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1516 1517 1518 1519 1520 1521 1522
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1523 1524
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1538

1539
    Parameters:
L
lujun 已提交
1540 1541
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
1560
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
Z
zhongpu 已提交
1561 1562 1563
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1564

Z
zhongpu 已提交
1565 1566
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1567

1568
    Returns:
Z
zhongpu 已提交
1569
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1570 1571

    Examples:
1572

1573 1574
        .. code-block:: python

L
lujun 已提交
1575 1576 1577 1578
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1579
          # example 1
1580 1581
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1582 1583
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1584
              emb = fluid.dygraph.Embedding(
1585 1586 1587
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1588
              static_rlt3 = emb(base.to_variable(inp_word))
1589
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1604 1605
    """

1606 1607 1608 1609 1610 1611 1612
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1613
        super(Embedding, self).__init__()
1614 1615 1616 1617
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1618
            size[0] + padding_idx)
1619 1620 1621

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1622
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1623 1624 1625
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1626
        self.weight = self.create_parameter(
1627 1628 1629 1630 1631 1632
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
1633 1634 1635 1636 1637 1638
        if in_dygraph_mode():
            return core.ops.lookup_table_v2(
                self.weight, input, 'is_sparse', self._is_sparse,
                'is_distributed', self._is_distributed, 'remote_prefetch',
                self._remote_prefetch, 'padding_idx', self._padding_idx)

1639
        check_variable_and_dtype(input, 'input', ['int64'], 'Embedding')
1640 1641 1642 1643 1644 1645
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
            'padding_idx': self._padding_idx
        }
1646

1647 1648
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
1649
            type='lookup_table_v2',
1650
            inputs={'Ids': input,
1651
                    'W': self.weight},
1652
            outputs={'Out': out},
1653
            attrs=attrs)
1654 1655

        return out
M
minqiyang 已提交
1656 1657


1658
class LayerNorm(layers.Layer):
1659
    """
1660 1661 1662 1663
    :alias_main: paddle.nn.LayerNorm
	:alias: paddle.nn.LayerNorm,paddle.nn.layer.LayerNorm,paddle.nn.layer.norm.LayerNorm
	:old_api: paddle.fluid.dygraph.LayerNorm

1664 1665 1666
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1667
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1668

1669
    The formula is as follows:
1670

1671
    ..  math::
1672

1673
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1674

1675
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1676

1677
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1678

1679 1680 1681 1682 1683
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1684

1685
    Parameters:
1686 1687 1688 1689
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1690
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1691
            normalization. Default: True.
1692
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1693
            normalization. Default: True.
1694
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1695
            division by zero. Default: 1e-05.
1696
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1697 1698 1699
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1700
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1701
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1702 1703 1704
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1705
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1706
        act(str, optional): Activation to be applied to the output of layer normalization.
L
lujun 已提交
1707
                  Default: None.
1708 1709
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1710
    Returns:
1711
        None
1712

1713
    Examples:
1714

1715 1716 1717
        .. code-block:: python

          import paddle.fluid as fluid
1718
          from paddle.fluid.dygraph.base import to_variable
1719 1720
          import numpy

1721
          x = numpy.random.random((3, 32, 32)).astype('float32')
1722
          with fluid.dygraph.guard():
1723
              x = to_variable(x)
1724
              layerNorm = fluid.LayerNorm([32, 32])
1725
              ret = layerNorm(x)
1726

1727
    """
1728

1729
    def __init__(self,
1730
                 normalized_shape,
1731 1732 1733 1734 1735
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1736 1737 1738 1739 1740
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
1741

1742
        self._normalized_shape = list(normalized_shape)
1743 1744 1745 1746 1747 1748
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1749 1750
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1751
        if self._scale:
1752
            self.weight = self.create_parameter(
1753 1754 1755 1756
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1757 1758
        else:
            if self._param_attr:
T
tianshuo78520a 已提交
1759
                logging.warn("param_attr are only available with scale is True")
1760
            self.weight = None
1761

1762 1763
        if self._shift:
            assert self._bias_attr is not False
1764
            self.bias = self.create_parameter(
1765 1766 1767 1768
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)
1769 1770
        else:
            if self._bias_attr:
T
tianshuo78520a 已提交
1771
                logging.warn("bias_attr are only available with shift is True")
1772
            self.bias = None
1773 1774

    def forward(self, input):
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
            raise ValueError(
                'Given normalized_shape is ' + str_normalized_shape +
                ', expected input with shape [*, ' + str_normalized_shape[
                    1:] + ', but got input shape ' + str(input_shape))
1786 1787 1788 1789 1790 1791 1792 1793

        if in_dygraph_mode():
            pre_act, _, _ = core.ops.layer_norm(
                input, self.weight, self.bias, 'epsilon', self._epsilon,
                'begin_norm_axis', self._begin_norm_axis)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

1794 1795 1796
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'LayerNorm')

1797
        inputs = dict()
1798
        inputs['X'] = [input]
1799
        if self._scale:
1800
            inputs['Scale'] = [self.weight]
1801
        if self._shift:
1802 1803 1804 1805 1806 1807
            inputs['Bias'] = [self.bias]
        attrs = {
            "epsilon": self._epsilon,
            "begin_norm_axis": self._begin_norm_axis
        }

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

1829
        return self._helper.append_activation(layer_norm_out, act=self._act)
1830 1831


M
minqiyang 已提交
1832 1833 1834
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1835 1836 1837 1838 1839
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1850
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1876
    Parameters:
L
lujun 已提交
1877
        size (int): The input dimension value.
D
DuYao 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1887 1888 1889 1890


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1891 1892 1893 1894
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1895 1896 1897 1898 1899
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1900
            is initialized zero. The default value is None.
L
lujun 已提交
1901
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1902
                             The default value is 'tanh'.
L
lujun 已提交
1903
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1904 1905 1906
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1907

D
DuYao 已提交
1908 1909 1910 1911
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1912

M
minqiyang 已提交
1913
    Returns:
D
DuYao 已提交
1914 1915 1916 1917
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1931
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1932 1933 1934
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1935
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1936 1937 1938
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1949
        super(GRUUnit, self).__init__()
1950
        self._bias_attr = bias_attr
M
minqiyang 已提交
1951 1952 1953 1954 1955
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1956 1957
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1958

M
minqiyang 已提交
1959
        self._dtype = dtype
M
minqiyang 已提交
1960 1961
        size = size // 3
        # create weight
1962
        self.weight = self.create_parameter(
M
minqiyang 已提交
1963
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
1964 1965

        # create bias
M
minqiyang 已提交
1966
        bias_size = [1, 3 * size]
1967
        self._bias_size = bias_size
1968
        self.bias = self.create_parameter(
M
minqiyang 已提交
1969
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
1970

M
minqiyang 已提交
1971
    def forward(self, input, hidden):
1972 1973 1974 1975 1976 1977
        if in_dygraph_mode():
            gate, reset_hidden_pre, updated_hidden = core.ops.gru_unit(
                input, hidden, self.weight, self.bias, 'activation',
                self.activation, 'gate_activation', self.gate_activation)
            return updated_hidden, reset_hidden_pre, gate

1978 1979 1980 1981
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'GRUUnit')
        check_variable_and_dtype(hidden, 'hidden', ['float32', 'float64'],
                                 'GRUUnit')
1982 1983 1984 1985 1986
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
            'Weight': [self.weight]
        }
1987
        if self.bias is not None:
1988
            inputs['Bias'] = [self.bias]
M
minqiyang 已提交
1989 1990 1991 1992 1993
        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
2003 2004
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
2005 2006 2007
            })

        return updated_hidden, reset_hidden_pre, gate
2008 2009 2010 2011


class NCE(layers.Layer):
    """
2012 2013 2014 2015 2016
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
2017
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
2018

2019
    Parameters:
2020 2021
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
2022
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2023 2024 2025
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
2026
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
2027 2028 2029 2030
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
2031
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
T
tianshuo78520a 已提交
2032
        sampler (str, optional): The sampler used to sample class from negative classes.
2033 2034
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
2035
        custom_dist (float[], optional): A float[] with size=num_total_classes.
2036
                       It is used when sampler is set to 'custom_dist'.
2037
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
2038
                       Default: None.
2039 2040
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
2041
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2042

2043 2044
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
2045

2046 2047
        **bias** (Parameter or None): the learnable bias of this layer.
    
2048
    Returns:
2049
        None
2050 2051 2052 2053

    Examples:
        .. code-block:: python

2054 2055 2056
            import numpy as np
            import paddle.fluid as fluid

2057
            window_size = 5
2058 2059
            dict_size = 20
            label_word = int(window_size // 2) + 1
2060
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
2082
                nce = fluid.NCE(
2083
                             num_total_classes=dict_size,
2084
                             dim=embs3.shape[1],
2085 2086 2087 2088 2089 2090 2091
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

2092 2093
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
2094 2095 2096 2097 2098

    """

    def __init__(self,
                 num_total_classes,
2099
                 dim,
2100
                 sample_weight=None,
2101 2102 2103 2104 2105 2106
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
2107 2108 2109
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
2110 2111 2112
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
2113
        self._dtype = dtype
2114
        self._inputs = dict()
2115
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

2203
        self.weight = self.create_parameter(
2204 2205 2206
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
2207
            dtype=self._dtype)
2208
        if self._bias_attr:
2209
            self.bias = self.create_parameter(
2210 2211 2212
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
2213
                dtype=self._dtype)
2214 2215
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
2216

2217
    def forward(self, input, label, sample_weight=None):
2218 2219 2220 2221
        check_variable_and_dtype(input, "input", ['float32', 'float64'], "NCE")
        check_variable_and_dtype(label, "label", ['int64'], "NCE")
        check_type(sample_weight, 'sample_weight', (Variable, type(None)),
                   'NCE')
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
    """
2250 2251 2252 2253
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

2254 2255 2256 2257 2258
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2259
    Parameters:
L
lujun 已提交
2260
        mode (str): The mode for weight sharing. It supports all, channel
2261 2262 2263
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
2264 2265 2266
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
2267
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
2268 2269
          This argument is required when mode is "element".
          Default: None.
2270 2271
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
2272
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2273

2274 2275 2276
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
2277
    Returns:
2278
        None
2279 2280 2281 2282 2283

    Examples:

        .. code-block:: python

L
lujun 已提交
2284
          import paddle.fluid as fluid
2285
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
2286 2287 2288 2289
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
2290
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
2302
                 input_shape=inp_np.shape,
L
lujun 已提交
2303
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
2304
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
2305

2306 2307
    """

S
songyouwei 已提交
2308 2309 2310 2311 2312
    def __init__(self,
                 mode,
                 channel=None,
                 input_shape=None,
                 param_attr=None,
2313
                 dtype='float32'):
2314 2315
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
        super(PRelu, self).__init__(name_scope='prelu')
2316 2317
        self._mode = mode
        self._param_attr = param_attr
2318
        self._dtype = dtype
S
songyouwei 已提交
2319 2320 2321 2322 2323 2324
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
                channel,
                int), "channel argument is required when mode is 'channel'."
2325 2326 2327
            #NOTE(zhiqiu): The _alpha_shape should be [1, channel] + [1] * len(input_shape[2:]), not [1, channel, 1, 1].
            # However, the suffix 1 in the list is useless, since the tensor is viewed as one demension array during kernel calculation. 
            # And, input_shape is not required when mode is 'channel', so it is simplified.
2328 2329
            #NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version.
            self._alpha_shape = [1, channel, 1, 1]
S
songyouwei 已提交
2330 2331 2332 2333 2334 2335 2336
        elif mode == 'element':
            assert isinstance(input_shape, (
                list, tuple
            )), "input_shape argument is required when mode is 'element'."
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2337
        self.weight = self.create_parameter(
2338 2339 2340 2341 2342 2343 2344
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

    def forward(self, input):
2345
        check_variable_and_dtype(input, 'input', ['float32'], 'PRelu')
2346 2347 2348 2349
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
2350
                    'Alpha': self.weight},
2351 2352 2353 2354 2355 2356 2357
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
    """
2358 2359 2360 2361
    :alias_main: paddle.nn.BilinearTensorProduct
	:alias: paddle.nn.BilinearTensorProduct,paddle.nn.layer.BilinearTensorProduct,paddle.nn.layer.common.BilinearTensorProduct
	:old_api: paddle.fluid.dygraph.BilinearTensorProduct

2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2375
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2376

2377
    Parameters:
2378 2379 2380 2381 2382
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2383 2384 2385 2386
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2387
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2388
           If it is set to None, the bias is initialized zero. The default value is None.
2389
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2390

D
DuYao 已提交
2391 2392 2393 2394
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2395

2396 2397 2398 2399 2400 2401
    Returns:
       Variable: A 2-D Tensor of shape [batch_size, size].

    Examples:
       .. code-block:: python

2402 2403 2404 2405 2406 2407 2408
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             layer1 = numpy.random.random((5, 5)).astype('float32')
             layer2 = numpy.random.random((5, 4)).astype('float32')
             bilinearTensorProduct = fluid.dygraph.nn.BilinearTensorProduct(
2409
                    input1_dim=5, input2_dim=4, output_dim=1000)
2410 2411
             ret = bilinearTensorProduct(fluid.dygraph.base.to_variable(layer1),
                                fluid.dygraph.base.to_variable(layer2))
2412 2413 2414
    """

    def __init__(self,
2415 2416 2417
                 input1_dim,
                 input2_dim,
                 output_dim,
2418 2419 2420
                 name=None,
                 act=None,
                 param_attr=None,
2421 2422 2423
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2424 2425 2426 2427
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2428 2429 2430
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2431
        self._inputs = dict()
2432
        self._dtype = dtype
2433

2434
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2435
        self.weight = self.create_parameter(
2436 2437 2438 2439
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
2440
        bias_size = [1, self._output_dim]
2441
        self.bias = self.create_parameter(
2442 2443 2444 2445
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True)
2446 2447

    def forward(self, x, y):
2448 2449 2450 2451
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'BilinearTensorProduct')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'],
                                 'BilinearTensorProduct')
2452
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
2453
        if self.bias is not None:
2454
            self._inputs["Bias"] = self.bias
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
2469
        return self._helper.append_activation(out, act=self._act)
2470 2471 2472 2473


class Conv2DTranspose(layers.Layer):
    """
2474 2475
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2476
    The convolution2D transpose layer calculates the output based on the input,
2477 2478 2479
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2480 2481
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2482 2483
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2484 2485 2486
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2487 2488
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2489 2490 2491 2492 2493 2494 2495 2496 2497

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2498 2499
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2500
    * :math:`\\ast`: Convolution operation.
2501
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2526
    Parameters:
2527
        num_channels(int): The number of channels in the input image.
2528
        num_filters(int): The number of the filter. It is as same as the output
2529
            feature map.
2530 2531 2532
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2533
        output_size(int or tuple, optional): The output image size. If output size is a
2534 2535 2536
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2537
            should follow the formula above. Default: None.
2538
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2539
            contain two integers, (padding_H, padding_W). Otherwise, the
2540 2541
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2542
            contain two integers, (stride_H, stride_W). Otherwise, the
2543 2544
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2545
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2546 2547
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
2548 2549 2550 2551
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2552 2553
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2554 2555 2556
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2557
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2558 2559 2560 2561
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2562
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2563
            library is installed. Default: True.
2564
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2565
            Default: None.
2566
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2567

2568 2569
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2570

2571
        **bias** (Parameter or None): the learnable bias of this layer.
2572

2573 2574
    Returns:
        None
2575 2576 2577 2578

    Examples:
       .. code-block:: python

2579
          import paddle.fluid as fluid
2580
          import numpy as np
2581 2582

          with fluid.dygraph.guard():
2583
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2584
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2585
                    num_channels=32, num_filters=2, filter_size=3)
2586 2587
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2588 2589 2590
    """

    def __init__(self,
2591
                 num_channels,
2592
                 num_filters,
2593
                 filter_size,
2594 2595 2596 2597 2598 2599 2600 2601
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2602 2603 2604
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2605 2606 2607
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2608
        self._act = act
2609
        self._groups = groups
2610
        self._num_channels = num_channels
2611 2612 2613 2614 2615 2616 2617
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2618
        self._dtype = dtype
2619

2620 2621 2622
        if (self._num_channels == self._groups and
                self._num_filters == self._num_channels and
                not self._use_cudnn):
2623
            self._op_type = 'depthwise_conv2d_transpose'
2624 2625
        else:
            self._op_type = 'conv2d_transpose'
2626 2627 2628 2629 2630

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2631 2632
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2644
        filter_shape = [self._num_channels, self._num_filters // self._groups
2645 2646
                        ] + self._filter_size

2647
        self.weight = self.create_parameter(
2648
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
2649

2650
        self.bias = self.create_parameter(
2651 2652 2653 2654 2655
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2656
    def forward(self, input):
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
        if in_dygraph_mode():
            op = getattr(core.ops, self._op_type)
            out = op(input, self.weight, 'output_size', self._output_size,
                     'strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups,
                     'use_cudnn', self._use_cudnn)
            pre_bias = out
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

2669 2670 2671 2672
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'],
                                 "Conv2DTranspose")

2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
            'use_cudnn': self._use_cudnn
        }

2683 2684 2685 2686
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
2687
            inputs=inputs,
2688
            outputs={'Output': pre_bias},
2689
            attrs=attrs)
2690

2691
        if self.bias is not None:
2692 2693 2694 2695 2696
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2697
                        'Y': [self.bias]},
2698 2699 2700 2701 2702 2703
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2704 2705 2706 2707 2708 2709 2710 2711 2712
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2713
    Parameters:
L
lujun 已提交
2714
        name_scope(str): The name of this class.
2715
        num_filters (int): number of filters.
L
lujun 已提交
2716 2717 2718
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2731 2732 2733 2734
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2748
        assert not in_dygraph_mode(
2749
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2750 2751 2752 2753 2754 2755 2756
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2757
        self._act = act
2758

2759
    def _build_once(self, input):
2760 2761
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2762
        self.weight = self.create_parameter(
2763
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2764

2765
        self.bias = self.create_parameter(
2766 2767 2768 2769 2770
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2771 2772 2773 2774 2775 2776
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
2777
                'Filter': [self.weight],
2778 2779 2780 2781 2782 2783 2784
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
2785

2786
        if self.bias is not None:
2787 2788 2789 2790 2791
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2792
                        'Y': [self.bias]},
2793 2794 2795 2796 2797 2798
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2799 2800 2801


class RowConv(layers.Layer):
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2820
    Parameters:
L
lujun 已提交
2821
        name_scope(str): The name of this class.
2822 2823 2824
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2825 2826
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2827

2828 2829 2830
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2831
    Returns:
L
lujun 已提交
2832 2833
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2849 2850 2851 2852 2853
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2854
        assert not in_dygraph_mode(
2855
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2856 2857 2858 2859 2860
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2861
    def _build_once(self, input):
L
lujun 已提交
2862 2863
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2864
        self.weight = self.create_parameter(
2865 2866 2867 2868
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2869 2870 2871 2872 2873 2874

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2875
                    'Filter': [self.weight]},
L
lujun 已提交
2876 2877 2878 2879 2880 2881
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2882 2883 2884 2885
    :alias_main: paddle.nn.GroupNorm
	:alias: paddle.nn.GroupNorm,paddle.nn.layer.GroupNorm,paddle.nn.layer.norm.GroupNorm
	:old_api: paddle.fluid.dygraph.GroupNorm

2886 2887 2888 2889 2890 2891
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2892
        channels(int): The number of channels of input.
2893 2894 2895 2896 2897 2898 2899 2900 2901
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
T
tianshuo78520a 已提交
2902
        act(str, optional): Activation to be applied to the output of group normalization. Default: None.
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2916
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2917
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2918 2919 2920 2921

    """

    def __init__(self,
2922
                 channels,
L
lujun 已提交
2923 2924 2925 2926 2927
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
2928 2929 2930
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
2931 2932 2933
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2934
        self._channels = channels
L
lujun 已提交
2935 2936
        self._groups = groups
        self._act = act
2937
        self._dtype = dtype
L
lujun 已提交
2938 2939 2940
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2941
        param_shape = [self._channels]
L
lujun 已提交
2942

2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))

        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
2954 2955 2956

    def forward(self, input):
        inputs = {'X': input}
2957
        if self.bias is not None:
2958
            inputs['Bias'] = self.bias
2959
        if self.weight is not None:
2960
            inputs['Scale'] = self.weight
L
lujun 已提交
2961 2962

        # create output
2963
        mean_out = self._helper.create_variable_for_type_inference(
L
lujun 已提交
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._groups})

        return self._helper.append_activation(group_norm_out, self._act)


class SpectralNorm(layers.Layer):
2985
    """
2986 2987 2988 2989
    :alias_main: paddle.nn.SpectralNorm
	:alias: paddle.nn.SpectralNorm,paddle.nn.layer.SpectralNorm,paddle.nn.layer.norm.SpectralNorm
	:old_api: paddle.fluid.dygraph.SpectralNorm

2990 2991
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
T
tianshuo78520a 已提交
3002
    :attr:`power_iters` should be a positive integer, do following
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

3023
    Parameters:
3024
        weight_shape(list or tuple): The shape of weight parameter.
3025 3026 3027 3028
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
3029
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3030 3031

    Returns:
3032
        None
3033 3034 3035 3036 3037

    Examples:
       .. code-block:: python

            import paddle.fluid as fluid
3038
            import numpy as np
3039 3040

            with fluid.dygraph.guard():
3041 3042 3043
                weight = np.random.random((2, 8, 32, 32)).astype('float32')
                spectralNorm = fluid.dygraph.nn.SpectralNorm(weight.shape, dim=1, power_iters=2)
                ret = spectralNorm(fluid.dygraph.base.to_variable(weight))
3044 3045 3046

    """

3047 3048 3049 3050 3051 3052 3053
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
3054 3055 3056
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
3057
        self._dtype = dtype
L
lujun 已提交
3058

3059 3060 3061
        self._weight_shape = list(weight_shape)
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
3062

3063
        self.weight_u = self.create_parameter(
L
lujun 已提交
3064 3065 3066 3067
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
3068
        self.weight_u.stop_gradient = True
L
lujun 已提交
3069

3070
        self.weight_v = self.create_parameter(
L
lujun 已提交
3071 3072 3073 3074
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
3075
        self.weight_v.stop_gradient = True
L
lujun 已提交
3076 3077

    def forward(self, weight):
3078 3079
        check_variable_and_dtype(weight, "weight", ['float32', 'float64'],
                                 'SpectralNorm')
3080
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
3096
    """
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
3107
        feature_size(int): last dimension of nodes_vector.
3108 3109 3110 3111 3112 3113 3114
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
3115
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3116

3117 3118
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
3119

3120
        **bias** (Parameter or None): the learnable bias of this layer.
3121

3122 3123
    Returns:
        None
L
lujun 已提交
3124

3125
    Examples:
L
lujun 已提交
3126

3127
        .. code-block:: python
3128

3129 3130
          import paddle.fluid as fluid
          import numpy
3131

3132 3133 3134 3135
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
3136
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
3137
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
3138 3139
    """

L
lujun 已提交
3140
    def __init__(self,
3141
                 feature_size,
L
lujun 已提交
3142 3143 3144 3145 3146 3147
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
3148 3149 3150
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
3151
        self._name = name
3152
        self._feature_size = feature_size
L
lujun 已提交
3153 3154 3155 3156 3157 3158
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
3159 3160
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
3161
        if self._bias_attr:
3162
            self.bias = self.create_parameter(
L
lujun 已提交
3163 3164 3165 3166
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
3167
        self.weight = self.create_parameter(
L
lujun 已提交
3168 3169 3170 3171 3172 3173
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, nodes_vector, edge_set):
3174 3175
        check_type(nodes_vector, 'nodes_vector', (Variable), 'TreeConv')
        check_type(edge_set, 'edge_set', (Variable), 'TreeConv')
L
lujun 已提交
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
3187
                'Filter': self.weight
L
lujun 已提交
3188 3189 3190 3191 3192 3193 3194 3195 3196
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
3197
                        'Y': [self.bias]},
L
lujun 已提交
3198 3199 3200 3201 3202
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226


class Flatten(layers.Layer):
    """
    :alias_main: paddle.nn.Flatten
    :alias: paddle.nn.Flatten,paddle.nn.layer.Flatten,paddle.nn.layer.common.Flatten
    This interface is used to construct a callable object of the ``FLatten`` class.
    For more details, refer to code examples.
    It implements flatten a contiguous range of dims into a tensor.

    Equation:

    Parameters:
        start_axis(int): first dim to flatten (default = 1)
        stop_axis(int): last dim to flatten (default = -1).
    
    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle
3227
          from paddle import to_variable
3228 3229 3230 3231
          import numpy as np

          inp_np = np.ones([5, 2, 3, 4]).astype('float32')
          
3232
          paddle.disable_static()
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
          
          inp_np = to_variable(inp_np)
          flatten = paddle.nn.Flatten(start_axis=1, stop_axis=2)
          flatten_res = flatten(inp_np)

    """

    def __init__(self, start_axis=1, stop_axis=-1):
        super(Flatten, self).__init__()
        self.start_axis = start_axis
        self.stop_axis = stop_axis

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(input.dtype)
        x_shape = self._helper.create_variable_for_type_inference(input.dtype)

        if in_dygraph_mode():
            dy_out, _ = core.ops.flatten_contiguous_range(
                input, 'start_axis', self.start_axis, 'stop_axis',
                self.stop_axis)
            return dy_out
        self._helper.append_op(
            type="flatten_contiguous_range",
            inputs={"X": input},
            outputs={"Out": out,
                     "XShape": x_shape},
            attrs={"start_axis": self.start_axis,
                   "stop_axis": self.stop_axis})
        return out