dgc_momentum_op.h 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <memory>

#include "paddle/fluid/operators/optimizers/momentum_op.h"
H
hong 已提交
20
#include "paddle/phi/kernels/sgd_kernel.h"
21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class DGCMomentumKernel : public framework::OpKernel<T> {
 public:
  DGCMomentumKernel()
H
hong 已提交
29
      : _momentum_op_kernel(new MomentumOpKernel<DeviceContext, T>()) {}
30 31 32 33 34 35 36 37 38 39

  void Compute(const framework::ExecutionContext& context) const override {
    auto rampup_begin_step = context.Attr<float>("rampup_begin_step");
    if (static_cast<int>(rampup_begin_step) < 0) {
      return;
    }

    auto current_step_tensor = context.Input<framework::Tensor>("current_step");
    auto* current_step = current_step_tensor->data<T>();

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    // nranks
    auto nranks_tensor = context.Input<framework::Tensor>("nranks");
    const int nranks = static_cast<const int>(*nranks_tensor->data<float>());
    PADDLE_ENFORCE_GT(
        nranks, 1,
        platform::errors::InvalidArgument(
            "DGC is not useful when num_trainers <= 1, but now nranks=%d",
            nranks));

    const framework::Tensor* g = context.Input<framework::Tensor>("Grad");
    framework::Tensor* g_out = context.Output<framework::Tensor>("Grad_out");
    auto g_e = framework::EigenVector<T>::Flatten(*g);
    auto g_out_e = framework::EigenVector<T>::Flatten(*g_out);

    auto& dev_ctx = context.template device_context<DeviceContext>();
    auto& eigen_ctx = *dev_ctx.eigen_device();

    // NOTE. In dgc_op we multi grad with nranks, so we need /nranks here.
    g_out_e.device(eigen_ctx) = (1.0 / nranks) * g_e;

60 61 62 63 64 65 66 67 68
    VLOG(10) << "current_step:" << *current_step
             << ", rampup_begin_step:" << rampup_begin_step;

    if (static_cast<int>(*current_step) < static_cast<int>(rampup_begin_step)) {
      VLOG(10) << " so use momentum optimizer";
      return _momentum_op_kernel->Compute(context);
    }

    VLOG(10) << " so use sgd optimizer";
H
hong 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

    const auto* param_var = context.InputVar("Param");
    const auto* grad_var = context.InputVar("Grad");
    auto* learning_rate = context.Input<framework::Tensor>("LearningRate");
    bool multi_precision = context.Attr<bool>("multi_precision");
    if (param_var->IsType<framework::LoDTensor>()) {
      auto* param = context.Input<framework::Tensor>("Param");
      auto* param_out = context.Output<framework::Tensor>("ParamOut");
      auto* master_param_out =
          context.Output<framework::Tensor>("MasterParamOut");
      paddle::optional<const framework::Tensor&> master_param_opt =
          paddle::none;
      if (multi_precision) {
        auto* master_param = context.Input<framework::Tensor>("MasterParam");
        master_param_opt = *master_param;
      }

      if (grad_var->IsType<framework::Tensor>()) {
        // sgd_dense
        auto* grad = context.Input<framework::Tensor>("Grad");
        phi::SGDDenseKernel<T>(
            static_cast<const typename framework::ConvertToPhiContext<
                DeviceContext>::TYPE&>(dev_ctx),
            *param, *learning_rate, *grad, master_param_opt, multi_precision,
            param_out, master_param_out);
      } else {
        // sgd dense param sparse grad
        auto* grad = context.Input<phi::SelectedRows>("Grad");
        phi::SGDDenseParamSparseGradKernel<T>(
            static_cast<const typename framework::ConvertToPhiContext<
                DeviceContext>::TYPE&>(dev_ctx),
            *param, *learning_rate, *grad, master_param_opt, multi_precision,
            param_out, master_param_out);
      }
    } else if (param_var->IsType<phi::SelectedRows>() &&
               grad_var->IsType<phi::SelectedRows>() &&
               platform::is_cpu_place(context.GetPlace())) {
      // sgd sparse param sparse grad
      auto* param = context.Input<phi::SelectedRows>("Param");
      auto* param_out = context.Output<phi::SelectedRows>("ParamOut");
      auto* master_param_out =
          context.Output<phi::SelectedRows>("MasterParamOut");
      paddle::optional<const phi::SelectedRows&> master_param_opt =
          paddle::none;
      if (multi_precision) {
        auto* master_param = context.Input<phi::SelectedRows>("MasterParam");
        master_param_opt = *master_param;
      }
      auto* grad = context.Input<phi::SelectedRows>("Grad");
      phi::SGDSparseParamSparseGradKernel<T>(
          static_cast<const typename framework::ConvertToPhiContext<
              DeviceContext>::TYPE&>(dev_ctx),
          *param, *learning_rate, *grad, master_param_opt, multi_precision,
          param_out, master_param_out);

    } else {
      PADDLE_THROW("gdc not support yet");
    }
127 128 129 130 131 132 133 134
  }

 private:
  std::unique_ptr<MomentumOpKernel<DeviceContext, T>> _momentum_op_kernel;
};

}  // namespace operators
}  // namespace paddle