paddle_mlir.cc 16.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/infrt/host_context/paddle_mlir.h"
#include "paddle/infrt/dialect/pd_ops_info.h"

MLIRModelGenImpl::MLIRModelGenImpl()
    : context_(infrt::Global::getMLIRContext()), builder_(context_) {
  context_->allowUnregisteredDialects();
  context_->getOrLoadDialect<mlir::StandardOpsDialect>();
  context_->getOrLoadDialect<infrt::dialect::INFRTDialect>();
  context_->getOrLoadDialect<infrt::ts::TensorShapeDialect>();
  context_->getOrLoadDialect<infrt::dt::DTDialect>();
  context_->getOrLoadDialect<mlir::pd::PaddleDialect>();
  module_ = mlir::ModuleOp::create(mlir::UnknownLoc::get(context_));
}

infrt::paddle::framework_proto::ProgramDesc MLIRModelGenImpl::ParsePaddleModel(
    const std::string &model_file) {
  infrt::paddle::framework_proto::ProgramDesc program_proto =
      *infrt::paddle::LoadProgram(model_file);
  return program_proto;
}

mlir::ModuleOp MLIRModelGenImpl::ImportPaddleModel(
    const std::string &model_dir) {
  infrt::paddle::framework_proto::ProgramDesc program_proto =
      ParsePaddleModel(model_dir + "/__model__");
  return ImportPaddleModel(program_proto);
}

mlir::ModuleOp MLIRModelGenImpl::ImportPaddleModel(
    const std::string &model_file, const std::string &param_file) {
  infrt::paddle::framework_proto::ProgramDesc program_proto =
      ParsePaddleModel(model_file);
  return ImportPaddleModel(program_proto);
}

mlir::ModuleOp MLIRModelGenImpl::ImportPaddleModel(
    const infrt::paddle::framework_proto::ProgramDesc &program) {
  main_block_ = program.blocks(0);
  llvm::SmallVector<mlir::Type, 4> operandTypes = GetModelInputsType(program);
  llvm::SmallVector<mlir::Type, 4> resultTypes = GetModelOutputsType(program);
  mlir::FuncOp mainFunc = UpdateModelModule(operandTypes, resultTypes);
  UpdateModelParams(program, &mainFunc);
  UpdateModelOps(program);
  UpdateModelOutputs(program);
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
  return module_;
}

mlir::FuncOp MLIRModelGenImpl::UpdateModelModule(
    llvm::SmallVector<mlir::Type, 4> operandTypes,
    llvm::SmallVector<mlir::Type, 4> resultTypes) {
  // create main op
  const std::string &name = "main_graph";
  auto mainFunc = mlir::FuncOp::create(
      mlir::UnknownLoc::get(context_),
      name,
      /*type=*/builder_.getFunctionType({operandTypes}, {resultTypes}),
      /*attrs=*/{});
  module_.push_back(mainFunc);
  mainFunc.addEntryBlock();
  builder_.setInsertionPointToStart(&mainFunc.body().back());
  return mainFunc;
}

llvm::SmallVector<mlir::Type, 4> MLIRModelGenImpl::GetModelInputsType(
    const infrt::paddle::framework_proto::ProgramDesc &program) {
  llvm::SmallVector<mlir::Type, 4> operandTypes;
  operandTypes.push_back(infrt::dt::TensorMapType::get(context_));
  for (auto &op_desc : main_block_.ops()) {
    if (op_desc.type() != "feed") continue;
    for (int var_idx = 0; var_idx < op_desc.outputs_size(); ++var_idx) {
      // update input variables
      auto &in = op_desc.outputs()[var_idx];
      std::string input_var_name = in.arguments(0);
      for (int i = 0; i < main_block_.vars_size(); i++) {
        auto var_desc = main_block_.vars(i);
        if (var_desc.name() == input_var_name) {
          std::vector<int64_t> dims = RepeatedToVector<int64_t>(
              var_desc.type().lod_tensor().tensor().dims());
          mlir::Type precision_;
          ConvertDataType(var_desc.type().lod_tensor().tensor().data_type(),
                          builder_,
                          &precision_);
          mlir::Type type_ = mlir::RankedTensorType::get(dims, precision_);
          operandTypes.push_back(type_);
        }
      }
    }
  }
  return operandTypes;
}

llvm::SmallVector<mlir::Type, 4> MLIRModelGenImpl::GetModelOutputsType(
    const infrt::paddle::framework_proto::ProgramDesc &program) {
  llvm::SmallVector<mlir::Type, 4> resultTypes;
  for (auto &op_desc : main_block_.ops()) {
    if (op_desc.type() != "fetch") continue;
    for (int var_idx = 0; var_idx < op_desc.inputs_size(); ++var_idx) {
      auto &in = op_desc.inputs()[var_idx];
      std::string input_var_name = in.arguments(0);
      for (int i = 0; i < main_block_.vars_size(); i++) {
        auto var_desc = main_block_.vars(i);
        if (var_desc.name() == input_var_name) {
          std::vector<int64_t> dims = RepeatedToVector<int64_t>(
              var_desc.type().lod_tensor().tensor().dims());
          mlir::Type precision_;
          ConvertDataType(var_desc.type().lod_tensor().tensor().data_type(),
                          builder_,
                          &precision_);
          mlir::Type type_ = mlir::RankedTensorType::get(dims, precision_);
          resultTypes.push_back(type_);
        }
      }
    }
  }
  return resultTypes;
}

void MLIRModelGenImpl::UpdateModelOps(
    const infrt::paddle::framework_proto::ProgramDesc &program) {
  for (auto &op_desc : main_block_.ops()) {
    if (op_desc.type() == "feed" || op_desc.type() == "fetch") {
      continue;
    }
    buildOperation(op_desc);
  }
}

void MLIRModelGenImpl::UpdateModelParams(
    const infrt::paddle::framework_proto::ProgramDesc &program,
    mlir::FuncOp *mainFunc) {
  // update input vars
147
  int input_index = 1;
148 149 150 151 152 153
  for (auto &op_desc : main_block_.ops()) {
    if (op_desc.type() == "feed") {
      for (int var_idx = 0; var_idx < op_desc.outputs_size(); ++var_idx) {
        // update input variables
        auto &in = op_desc.outputs()[var_idx];
        std::string input_var_name = in.arguments(0);
154
        ::mlir::Value input_ = mainFunc->getArgument(input_index++);
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
        params_map_.insert(
            std::pair<std::string, mlir::Value>(input_var_name, input_));
      }
    }
  }

  // update persistable tensors
  ::mlir::Value map = mainFunc->getArgument(0);
  for (int i = 0; i < main_block_.vars_size(); i++) {
    auto var_desc = main_block_.vars(i);
    if (params_map_.find(var_desc.name()) != params_map_.end()) continue;
    if (var_desc.name() != "feed" && var_desc.name() != "fetch" &&
        var_desc.persistable()) {
      auto name = builder_.getStringAttr(var_desc.name());
      std::vector<int64_t> dims = RepeatedToVector<int64_t>(
          var_desc.type().lod_tensor().tensor().dims());
      mlir::Type precision_;
      ConvertDataType(var_desc.type().lod_tensor().tensor().data_type(),
                      builder_,
                      &precision_);
      mlir::Type type_ = mlir::RankedTensorType::get(dims, precision_);
176
      auto op = builder_.create<infrt::dt::TensorMapGetTensorOp>(
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
          mlir::UnknownLoc::get(context_), type_, map, name);
      params_map_.insert(std::pair<std::string, mlir::Value>(
          var_desc.name(), op.getOperation()->getResult(0)));
    }
  }
}

void MLIRModelGenImpl::UpdateModelOutputs(
    const infrt::paddle::framework_proto::ProgramDesc &program) {
  // update outputs
  for (auto &op_desc : main_block_.ops()) {
    if (op_desc.type() == "fetch") {
      for (int var_idx = 0; var_idx < op_desc.inputs_size(); ++var_idx) {
        auto &in = op_desc.inputs()[var_idx];
        // varibale name
        std::string input_var_name = in.arguments(0);
        // update model outpus
        mlir::Location loc = mlir::UnknownLoc::get(context_);
        llvm::SmallVector<mlir::Value, 4> operands;

        operands.push_back((params_map_[input_var_name]));

        llvm::SmallVector<mlir::Type, 4> resultTypes;
        llvm::SmallVector<mlir::NamedAttribute, 4> attrs;
        mlir::OperationState state(loc,
                                   mlir::ReturnOp::getOperationName(),
                                   operands,
                                   resultTypes,
                                   attrs);
        builder_.createOperation(state);
      }
    }
  }
}

void MLIRModelGenImpl::buildOperation(
    const infrt::paddle::framework_proto::OpDesc &op_) {
  const std::string &op_name = "pd." + op_.type();
  mlir::Location loc = mlir::UnknownLoc::get(context_);
  llvm::SmallVector<mlir::Value, 4> operands = GetOpInputValue(op_);
  llvm::SmallVector<mlir::Type, 4> resultTypes = GetOpOutputType(op_);
  llvm::SmallVector<mlir::NamedAttribute, 4> attrs = GetOpAttributes(op_);
  mlir::OperationState result(loc, op_name, operands, resultTypes, attrs);
  mlir::Operation *mlir_op_ = builder_.createOperation(result);
  RegisterOpOutputVars(op_, mlir_op_);
}

llvm::SmallVector<mlir::Value, 4> MLIRModelGenImpl::GetOpInputValue(
    const infrt::paddle::framework_proto::OpDesc &op_) {
  llvm::SmallVector<mlir::Value, 4> operands;

228
  std::unordered_map<std::string, uint8_t> inputs_info = {};
229 230 231 232 233
  if (pd_dialect_inputs_info_map_.count(op_.type()))
    inputs_info = pd_dialect_inputs_info_map_.at(op_.type());
  for (int var_idx = 0; var_idx < op_.inputs_size(); ++var_idx) {
    auto &var = op_.inputs(var_idx);
    if (!var.arguments().empty()) {
234
      if (!inputs_info.count(var.parameter())) continue;
235 236 237 238 239 240 241 242 243 244
      operands.push_back((params_map_[var.arguments()[0]]));
    }
  }
  return operands;
}

llvm::SmallVector<mlir::Type, 4> MLIRModelGenImpl::GetOpOutputType(
    const infrt::paddle::framework_proto::OpDesc &op_) {
  llvm::SmallVector<mlir::Type, 4> resultTypes;

245
  std::unordered_map<std::string, uint8_t> pd_dialect_outputs_info = {};
246 247 248 249 250 251
  if (pd_dialect_outputs_info_map_.count(op_.type()))
    pd_dialect_outputs_info = pd_dialect_outputs_info_map_.at(op_.type());

  // update op outputs info
  for (int var_idx = 0; var_idx < op_.outputs_size(); ++var_idx) {
    auto &var_name = op_.outputs(var_idx).arguments()[0];
252
    if (!pd_dialect_outputs_info.count(op_.outputs(var_idx).parameter()))
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
      continue;
    // update persistable tensors
    for (int i = 0; i < main_block_.vars_size(); i++) {
      auto var_desc = main_block_.vars(i);
      if (var_desc.name() == var_name) {
        std::vector<int64_t> dims = RepeatedToVector<int64_t>(
            var_desc.type().lod_tensor().tensor().dims());
        mlir::Type precision_;
        ConvertDataType(var_desc.type().lod_tensor().tensor().data_type(),
                        builder_,
                        &precision_);
        mlir::Type type_ = mlir::RankedTensorType::get(dims, precision_);
        resultTypes.push_back(type_);
      }
    }
  }
  return resultTypes;
}

llvm::SmallVector<mlir::NamedAttribute, 4> MLIRModelGenImpl::GetOpAttributes(
    const infrt::paddle::framework_proto::OpDesc &op_) {
  // GetInputVarName
  llvm::SmallVector<mlir::NamedAttribute, 4> attrs;

#define ATTR_IMPL_CASE(PROTO_TYPE, PROTO_TYPE_METHOD, MLIR_TYPE_METHOD) \
  case infrt::paddle::framework_proto::AttrType::PROTO_TYPE: {          \
    auto data = op_.attrs(attrs_num).PROTO_TYPE_METHOD();               \
    auto value_ = builder_.MLIR_TYPE_METHOD(data);                      \
    auto name_ = builder_.getStringAttr(attr_name_);                    \
    auto attr_ = mlir::NamedAttribute(name_, value_);                   \
    attrs.push_back(attr_);                                             \
    break;                                                              \
  }

#define REPEATED_ATTR_IMPLE_CASE(                                       \
    PROTO_TYPE, PROTO_TYPE_METHOD, MLIR_TYPE, MLIR_TYPE_METHOD)         \
  case infrt::paddle::framework_proto::AttrType::PROTO_TYPE: {          \
    std::vector<MLIR_TYPE> data;                                        \
    for (const auto &var : op_.attrs(attrs_num).PROTO_TYPE_METHOD()) {  \
      data.push_back(MLIR_TYPE(var));                                   \
    }                                                                   \
    auto value_ =                                                       \
        builder_.MLIR_TYPE_METHOD(llvm::makeArrayRef<MLIR_TYPE>(data)); \
    auto name_ = builder_.getStringAttr(attr_name_);                    \
    auto attr_ = mlir::NamedAttribute(name_, value_);                   \
    attrs.push_back(attr_);                                             \
    break;                                                              \
  }

#define UNIMPLEMENTED_ATTR_IMPL_CASE(PROTO_TYPE)                        \
  case infrt::paddle::framework_proto::AttrType::PROTO_TYPE: {          \
    std::cout << "Unimplemented attr type: framework_proto::AttrType::" \
              << #PROTO_TYPE << std::endl;                              \
    break;                                                              \
  }

  // get registered attributes
  const std::string &op_name = "pd." + op_.type();
  mlir::RegisteredOperationName registered_op_name_ =
      mlir::RegisteredOperationName::lookup(op_name, context_).getValue();
  llvm::ArrayRef<mlir::StringAttr> attr_names_ =
      registered_op_name_.getAttributeNames();
  std::vector<mlir::StringAttr> attr_names_vec_ = attr_names_.vec();
  // update attrs
  for (int attrs_num = 0; attrs_num < op_.attrs_size(); attrs_num++) {
    auto attr_name_ = op_.attrs(attrs_num).name();
    auto type = op_.attrs(attrs_num).type();
    if (!std::count(attr_names_vec_.begin(), attr_names_vec_.end(), attr_name_))
      continue;
    switch (type) {
      ATTR_IMPL_CASE(FLOAT, f, getF32FloatAttr);
      ATTR_IMPL_CASE(BOOLEAN, b, getBoolAttr);
      ATTR_IMPL_CASE(INT, i, getI32IntegerAttr);
      ATTR_IMPL_CASE(LONG, l, getI64IntegerAttr);
      ATTR_IMPL_CASE(STRING, s, getStringAttr);

      REPEATED_ATTR_IMPLE_CASE(
          STRINGS, strings, llvm::StringRef, getStrArrayAttr);
      REPEATED_ATTR_IMPLE_CASE(FLOATS, floats, float, getF32ArrayAttr);
      REPEATED_ATTR_IMPLE_CASE(INTS, ints, int32_t, getI32ArrayAttr);
      REPEATED_ATTR_IMPLE_CASE(LONGS, longs, int64_t, getI64ArrayAttr);

      // Unimplemented attr type, will be supported later @DannyIsFunny
      // bools attribute is not supported due to bug of llvm.
      // REPEATED_ATTR_IMPLE_CASE(BOOLEANS, bools, bool, getBoolArrayAttr);
      UNIMPLEMENTED_ATTR_IMPL_CASE(BOOLEANS);
      UNIMPLEMENTED_ATTR_IMPL_CASE(BLOCK);
      UNIMPLEMENTED_ATTR_IMPL_CASE(BLOCKS);
      default:
        std::cout << "error attribute" << attr_name_ << std::endl;
    }
  }
  return attrs;
}

void MLIRModelGenImpl::RegisterOpOutputVars(
    const infrt::paddle::framework_proto::OpDesc &op_,
    mlir::Operation *mlir_op_) {
351 352 353
  std::unordered_map<std::string, uint8_t> pd_dialect_outputs_info =
      pd_dialect_outputs_info_map_.at(op_.type());

354 355
  // op outputs
  for (int var_idx = 0; var_idx < op_.outputs_size(); ++var_idx) {
356 357
    if (!pd_dialect_outputs_info.count(op_.outputs(var_idx).parameter()))
      continue;
358
    auto &var_name = op_.outputs(var_idx).arguments()[0];
359
    int index = pd_dialect_outputs_info[op_.outputs(var_idx).parameter()];
360
    // output name
361
    auto var_ = mlir_op_->getResult(index);
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
    params_map_.insert(std::pair<std::string, mlir::Value>(var_name, var_));
  }
}

bool ConvertDataType(infrt::paddle::framework_proto::VarType::Type dtype,
                     mlir::Builder builder,
                     mlir::Type *type) {
  switch (dtype) {
    case infrt::paddle::framework_proto::VarType::Type::VarType_Type_FP16:
      *type = builder.getF16Type();
      return true;
    case infrt::paddle::framework_proto::VarType::Type::VarType_Type_FP32:
      *type = builder.getF32Type();
      return true;
    case infrt::paddle::framework_proto::VarType::Type::VarType_Type_FP64:
      *type = builder.getF64Type();
      return true;
    case infrt::paddle::framework_proto::VarType::Type::VarType_Type_BOOL:
      *type = builder.getIntegerType(1);
      return true;
    case infrt::paddle::framework_proto::VarType::Type::VarType_Type_INT8:
      *type = builder.getIntegerType(8);
      return true;
    case infrt::paddle::framework_proto::VarType::Type::VarType_Type_INT16:
      *type = builder.getIntegerType(16);
      return true;
    case infrt::paddle::framework_proto::VarType::Type::VarType_Type_INT32:
      *type = builder.getIntegerType(32);
      return true;
    case infrt::paddle::framework_proto::VarType::Type::VarType_Type_INT64:
      *type = builder.getIntegerType(64);
      return true;
    case infrt::paddle::framework_proto::VarType::Type::VarType_Type_UINT8:
      *type = builder.getIntegerType(8, /*isSigned=*/false);
      return true;
    default:
      return false;
  }
}