batch_norm_op_xpu.cc 13.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_XPU

#include "paddle/fluid/operators/batch_norm_op.h"
18 19
#include <iterator>
#include <vector>
20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using DDim = framework::DDim;

template <typename DeviceContext, typename T>
class BatchNormXPUKernel : public framework::OpKernel<T> {
 public:
30
  void Compute(const framework::ExecutionContext &ctx) const override {
31
    const auto epsilon = ctx.Attr<float>("epsilon");
32
    float momentum = ctx.Attr<float>("momentum");
33 34 35 36
    const auto is_test = ctx.Attr<bool>("is_test");
    const auto use_global_stats = ctx.Attr<bool>("use_global_stats");
    const auto trainable_stats = ctx.Attr<bool>("trainable_statistics");
    bool test_mode = is_test && (!trainable_stats);
37

38
    bool global_stats = test_mode || use_global_stats;
39
    const auto &data_layout_str = ctx.Attr<std::string>("data_layout");
40
    const auto data_layout = framework::StringToDataLayout(data_layout_str);
41 42
    PADDLE_ENFORCE_EQ(data_layout_str == "NCHW" || data_layout_str == "NHWC",
                      true,
43
                      platform::errors::InvalidArgument(
44 45
                          "The 'data_layout' attribute must be NCHW or NHWC. "
                          "But recevived 'data_layout' is [%s].",
46
                          data_layout_str));
47 48 49

    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
50 51 52 53 54 55 56 57 58 59
    PADDLE_ENFORCE_EQ(
        x_dims.size() >= 2 && x_dims.size() <= 5, true,
        platform::errors::InvalidArgument(
            "The size of input's dimensions should be between 2 and 5"
            "But received: the size of input's dimensions is [%d]",
            x_dims.size()));

    int N, C, H, W, D;
    ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
    const auto *x_data = x->data<T>();
    const auto *scale_data = scale->data<float>();
    const auto *bias_data = bias->data<float>();

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    auto *saved_mean = ctx.Output<Tensor>("SavedMean");
    auto *saved_variance = ctx.Output<Tensor>("SavedVariance");

    // alloc memory
    auto *y_data = y->mutable_data<T>(ctx.GetPlace());
    mean_out->mutable_data<float>(ctx.GetPlace());
    variance_out->mutable_data<float>(ctx.GetPlace());
    saved_mean->mutable_data<float>(ctx.GetPlace());
    saved_variance->mutable_data<float>(ctx.GetPlace());

    auto &dev_ctx = ctx.template device_context<DeviceContext>();
80
    bool is_nchw = data_layout_str == "NCHW";
81

82
    if (!global_stats) {
83 84 85 86 87 88 89 90 91 92
      auto *mean_out_data = mean_out->data<float>();
      auto *variance_out_data = variance_out->data<float>();
      auto *saved_mean_data = saved_mean->data<float>();
      auto *saved_variance_data = saved_variance->data<float>();

      // if MomentumTensor is set, use MomentumTensor value, momentum
      // is only used in this training branch
      if (ctx.HasInput("MomentumTensor")) {
        const auto *mom_tensor = ctx.Input<Tensor>("MomentumTensor");
        Tensor mom_cpu;
93 94
        paddle::framework::TensorCopySync(*mom_tensor, platform::CPUPlace(),
                                          &mom_cpu);
95 96 97
        momentum = mom_tensor->data<float>()[0];
      }

98 99 100
      int r = xpu::batch_norm<T>(dev_ctx.x_context(), x_data, y_data, N, C, H,
                                 W, epsilon, momentum, scale_data, bias_data,
                                 saved_mean_data, saved_variance_data,
101
                                 mean_out_data, variance_out_data, is_nchw);
102 103 104 105
      PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
                        platform::errors::External(
                            "The batch_norm XPU API return wrong value[%d %s]",
                            r, XPUAPIErrorMsg[r]));
106
    } else {
107 108 109 110
      const auto *mean = ctx.Input<Tensor>("Mean");
      const auto *variance = ctx.Input<Tensor>("Variance");
      const auto *mean_data = mean->data<float>();
      const auto *variance_data = variance->data<float>();
111 112
      int r = xpu::batch_norm_infer(dev_ctx.x_context(), x_data, y_data, N, C,
                                    H, W, epsilon, scale_data, bias_data,
113
                                    mean_data, variance_data, is_nchw);
114
      PADDLE_ENFORCE_EQ(
115 116 117 118
          r, xpu::Error_t::SUCCESS,
          platform::errors::External(
              "The batch_norm_infer XPU API return wrong value[%d %s]", r,
              XPUAPIErrorMsg[r]));
119 120 121 122
    }
  }
};

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
template <typename T>
static int calculate_inv_BN_Y(xpu::Context *ctx, T *x, const T *scale,
                              const T *bias, const T *mean, const T *variance,
                              const int N, const int C, const int M,
                              const T *y) {
  PADDLE_ENFORCE_EQ(x, y, platform::errors::InvalidArgument(
                              "X and Y should be inplaced in inplace mode"));
  std::vector<int> tensor_shape_vec({N, C, M});
  std::vector<int> array_shape_vec({1, C, 1});
  // y - bias
  int r1 =
      xpu::broadcast_sub<T>(ctx, bias, y, x, array_shape_vec, tensor_shape_vec);
  // (y - bias) / scale
  int r2 = xpu::broadcast_div<T>(ctx, scale, x, x, array_shape_vec,
                                 tensor_shape_vec);
  // (y - bias) / scale / variance
  int r3 = xpu::broadcast_div<T>(ctx, variance, x, x, array_shape_vec,
                                 tensor_shape_vec);
  // (y - bias) / scale / variance + mean
  int r4 =
      xpu::broadcast_add<T>(ctx, mean, x, x, array_shape_vec, tensor_shape_vec);

  return r1 + r2 + r3 + r4;
}

template <typename T>
static int calculate_inv_var(xpu::Context *ctx, const T *var, const T epsilon,
                             const int C, T *epsilon_data, T *inv_var) {
  int r1 = constant(ctx, epsilon_data, 1, epsilon);
  std::vector<int> tensor_shape_vec({C});
  std::vector<int> array_shape_vec({1});
  int r2 = xpu::broadcast_add<T>(ctx, epsilon_data, var, inv_var,
                                 array_shape_vec, tensor_shape_vec);
  int r3 = xpu::rsqrt<T>(ctx, inv_var, inv_var, C);
  return r1 + r2 + r3;
}

160 161 162
template <typename DeviceContext, typename T>
class BatchNormGradXPUKernel : public framework::OpKernel<T> {
 public:
163 164 165 166 167 168 169 170 171
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");

    const auto &data_layout_str = ctx.Attr<std::string>("data_layout");
    bool use_global_stats = ctx.Attr<bool>("use_global_stats");
    const bool is_test = ctx.Attr<bool>("is_test");
    const float epsilon = ctx.Attr<float>("epsilon");
172
    const auto data_layout = framework::StringToDataLayout(data_layout_str);
173

174 175
    PADDLE_ENFORCE_EQ(data_layout_str == "NCHW" || data_layout_str == "NHWC",
                      true,
176
                      platform::errors::InvalidArgument(
177 178
                          "The 'data_layout' attribute must be NCHW or NHWC. "
                          "But recevived 'data_layout' is [%s].",
179
                          data_layout_str));
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    use_global_stats = is_test || use_global_stats;

    // batch_norm with inplace as false will take X as grad input, which
    // is same as cuDNN batch_norm backward calculation, batch_norm
    // with inplace as true only take Y as input and X should be calculate
    // by inverse operation of batch_norm on Y
    const Tensor *x;
    bool is_inplace;
    if (ctx.HasInput("Y")) {
      x = ctx.Input<Tensor>("Y");
      is_inplace = true;
      // if the input of batch norm is stop_gradient, d_x is null.
      if (d_x) {
        PADDLE_ENFORCE_EQ(d_x, d_y,
                          platform::errors::InvalidArgument(
                              "X@GRAD and Y@GRAD not inplace in inplace mode"));
      }
    } else {
      x = ctx.Input<Tensor>("X");
      is_inplace = false;
      if (d_x) {
        PADDLE_ENFORCE_NE(
            d_x, d_y, platform::errors::InvalidArgument(
                          "X@GRAD and Y@GRAD inplaced in non-inplace mode"));
      }
    }

    const auto &x_dims = x->dims();
213 214 215 216 217 218 219 220 221
    PADDLE_ENFORCE_EQ(
        x_dims.size() >= 2 && x_dims.size() <= 5, true,
        platform::errors::InvalidArgument(
            "The size of input's dimensions should be between 2 and 5"
            "But received: the size of input's dimensions is [%d]",
            x_dims.size()));

    int N, C, H, W, D;
    ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

    const auto *x_data = x->data<T>();
    const auto *d_y_data = d_y->data<T>();
    const auto *scale_data = scale->data<float>();

    // init output
    T *d_x_data = nullptr;
    T *d_bias_data = nullptr;
    T *d_scale_data = nullptr;
    if (d_x) {
      d_x_data = d_x->mutable_data<T>(ctx.GetPlace());
    }
    if (d_scale && d_bias) {
      d_scale_data = d_scale->mutable_data<float>(ctx.GetPlace());
      d_bias_data = d_bias->mutable_data<float>(ctx.GetPlace());
    }

    PADDLE_ENFORCE_EQ(
        scale->dims().size(), 1UL,
        platform::errors::InvalidArgument(
            "The size of scale's dimensions must equal to 1. But received: "
            "the size of scale's dimensions is [%d], the dimensions of scale "
            "is [%s].",
            scale->dims().size(), scale->dims()));
    PADDLE_ENFORCE_EQ(
        scale->dims()[0], C,
        platform::errors::InvalidArgument(
            "The first dimension of scale must equal to Channels[%d]. But "
            "received: the first dimension of scale is [%d]",
            C, scale->dims()[0]));

    auto &dev_ctx = ctx.template device_context<DeviceContext>();
    xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());

256 257 258 259
    const auto *batch_mean = ctx.Input<Tensor>("SavedMean");
    const auto *batch_inv_std = ctx.Input<Tensor>("SavedVariance");
    const auto *global_mean = ctx.Input<Tensor>("Mean");
    const auto *global_var = ctx.Input<Tensor>("Variance");
260 261 262

    // TODO(guozibin): hadle the situation case of N * H * W = 1
    if (is_inplace) {
263 264 265 266 267 268 269 270 271 272 273 274 275 276
      float *global_inv_std_data;
      if (use_global_stats) {
        global_inv_std_data =
            RAII_GUARD.alloc_l3_or_gm<float>(global_var->numel());
        float *epsilon_data = RAII_GUARD.alloc_l3_or_gm<float>(1);
        int r1 =
            calculate_inv_var(dev_ctx.x_context(), global_var->data<float>(),
                              epsilon, C, epsilon_data, global_inv_std_data);
        PADDLE_ENFORCE_EQ(r1, XPU_SUCCESS, platform::errors::External(
                                               "XPU API(batch_norm_grad "
                                               "calculate_inv_var function) "
                                               "return wrong value[%d %s]",
                                               r1, XPUAPIErrorMsg[r1]));
      }
277
      auto px = *x;
278 279 280 281
      auto *inv_std_data =
          use_global_stats ? global_inv_std_data : batch_inv_std->data<float>();
      auto mean_data = use_global_stats ? global_mean->data<float>()
                                        : batch_mean->data<float>();
282 283
      int r2 = calculate_inv_BN_Y(
          dev_ctx.x_context(), px.mutable_data<T>(ctx.GetPlace()),
284
          scale->data<float>(), bias->data<float>(), mean_data, inv_std_data, N,
285 286 287 288 289 290 291 292
          C, H * W, x->data<T>());
      PADDLE_ENFORCE_EQ(r2, XPU_SUCCESS, platform::errors::External(
                                             "XPU API(batch_norm_grad "
                                             "calculate_inv_BN_Y function) "
                                             "return wrong value[%d %s]",
                                             r2, XPUAPIErrorMsg[r2]));
    }

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
    int r3;
    bool is_nchw = data_layout_str == "NCHW";
    if (use_global_stats) {
      r3 = xpu::batch_norm_grad<T>(
          dev_ctx.x_context(), x_data, d_y_data, d_x_data, N, C, H, W,
          scale_data, nullptr, nullptr, d_scale_data, d_bias_data, is_nchw,
          global_mean->data<float>(), global_var->data<float>(), epsilon);
    } else {
      if (!d_x) {
        d_x_data = RAII_GUARD.alloc_l3_or_gm<T>(x->numel());
      }
      if (!d_scale) {
        d_scale_data = RAII_GUARD.alloc_l3_or_gm<float>(C);
      }
      if (!d_bias_data) {
        d_bias_data = RAII_GUARD.alloc_l3_or_gm<float>(C);
      }
      r3 = xpu::batch_norm_grad<T>(
          dev_ctx.x_context(), x_data, d_y_data, d_x_data, N, C, H, W,
          scale_data, batch_mean->data<float>(), batch_inv_std->data<float>(),
          d_scale_data, d_bias_data, is_nchw);
    }
315 316 317 318
    PADDLE_ENFORCE_EQ(r3, XPU_SUCCESS, platform::errors::External(
                                           "XPU API(batch_norm_grad) return "
                                           "wrong value[%d %s]",
                                           r3, XPUAPIErrorMsg[r3]));
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_XPU_KERNEL(
    batch_norm,
    ops::BatchNormXPUKernel<paddle::platform::XPUDeviceContext, float>);
REGISTER_OP_XPU_KERNEL(
    batch_norm_grad,
    ops::BatchNormGradXPUKernel<paddle::platform::XPUDeviceContext, float>);

#endif  // PADDLE_WITH_XPU