math_op_patch.py 14.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from .. import core
C
chentianyu03 已提交
18
from ..framework import Variable, convert_np_dtype_to_dtype_, _varbase_creator
19
from ..layers.layer_function_generator import OpProtoHolder
20
from . import no_grad
21
from ..framework import _in_eager_mode
22

23
import numpy as np
24
import warnings
W
wanghuancoder 已提交
25
from paddle import _C_ops
26

27 28 29 30 31 32
_supported_int_dtype_ = [
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
33
    core.VarDesc.VarType.BOOL,
34 35
]

36 37 38 39 40 41 42 43 44 45 46 47 48 49
# NOTE(chenweihang): We currently do not fully support the type promotion 
# between tensors. Parting support here is because the interoperation of 
# real and complex numbers in paddle quantum is very frequent, such as the 
# binary operation between `float` and `complex64`, so we must support the 
# correct type promotion on the APIs paddle quantum used.
# Now only check in dygraph (paddle quantum based dygraph)
# Full type promotion support will need to be fully verified later.
_supported_promote_complex_types_ = [
    '__add__',
    '__radd__',
    '__sub__',
    '__rsub__',
    '__mul__',
    '__rmul__',
50
    '__div__',
51
    '__truediv__',
52
    '__rdiv__',
53 54 55 56
    '__rtruediv__',
    '__matmul__',
]

57 58 59 60 61
_complex_dtypes = [
    core.VarDesc.VarType.COMPLEX64,
    core.VarDesc.VarType.COMPLEX128,
]

62
_already_patch_varbase = False
63
_already_patch_eager_tensor = False
64

65 66 67 68 69 70 71

def monkey_patch_math_varbase():
    """
    Similar to monkey_patch_variable.
    The difference is, in dygraph mode, use auto-generated op functions for better performance.
    """

72
    @no_grad
73
    def create_tensor(value, dtype, shape):
74
        out = _varbase_creator(dtype=dtype)
W
wanghuancoder 已提交
75 76
        out = _C_ops.fill_constant(out, 'dtype', dtype, 'shape', shape, 'value',
                                   value, 'force_cpu', False)
77 78
        out.stop_gradient = True
        return out
79 80 81 82 83 84 85

    def create_scalar(value, dtype):
        return create_tensor(value, dtype, shape=[1])

    def astype(self, dtype):
        """

86
        Cast a Tensor to a specified data type.
87 88

        Args:
89
            dtype: The target data type.
90 91

        Returns:
92
            Tensor: a new Tensor with target dtype
93 94 95 96

        Examples:
            .. code-block:: python

97
                import paddle
98 99
                import numpy as np

100 101 102 103
                original_tensor = paddle.ones([2, 2])
                print("original tensor's dtype is: {}".format(original_tensor.dtype))
                new_tensor = original_tensor.astype('float32')
                print("new tensor's dtype is: {}".format(new_tensor.dtype))
104 105

        """
106 107
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
W
wanghuancoder 已提交
108
        return _C_ops.cast(self, 'in_dtype', self.dtype, 'out_dtype', dtype)
109 110

    def _scalar_elementwise_op_(var, scale, bias):
W
wanghuancoder 已提交
111
        return _C_ops.scale(var, 'scale', scale, 'bias', bias)
112

113 114 115
    def _neg_(var):
        return _scalar_elementwise_op_(var, -1.0, 0.0)

116 117 118 119 120 121 122 123 124 125 126 127
    def _float_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to float."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
        return float(var.numpy().flatten()[0])

    def _long_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to long."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
T
tianshuo78520a 已提交
128
        return int(var.numpy().flatten()[0])
129 130 131 132 133 134 135 136 137

    def _int_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to int."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
        return int(var.numpy().flatten()[0])

    def _len_(var):
S
Steffy-zxf 已提交
138 139 140 141 142 143
        if var.type == core.VarDesc.VarType.VOCAB:
            return len(var.value().get_map_tensor())
        elif var.type == core.VarDesc.VarType.STRINGS:
            return len(var.value().get_string_tensor())
        else:
            return var.shape[0]
144 145 146 147 148 149

    def _index_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to python index."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
T
tianshuo78520a 已提交
150
        return int(var.numpy().flatten()[0])
151

152 153 154 155
    @property
    def _ndim_(var):
        return len(var.shape)

156 157 158 159
    @property
    def _size_(var):
        return np.prod(var.shape)

160 161 162 163 164 165 166 167 168 169
    @property
    def _T_(var):
        if len(var.shape) == 1:
            return var
        perm = []
        for i in range(len(var.shape)):
            perm.insert(0, i)
        out, _ = _C_ops.transpose2(var, 'axis', perm)
        return out

170
    def _scalar_add_(var, value):
171 172
        return _scalar_elementwise_op_(var, 1.0, value)

173
    def _scalar_sub_(var, value):
174 175
        return _scalar_elementwise_op_(var, 1.0, -value)

176
    def _scalar_rsub_(var, value):
177 178
        return _scalar_elementwise_op_(var, -1.0, value)

179
    def _scalar_mul_(var, value):
180 181
        return _scalar_elementwise_op_(var, value, 0.0)

182 183 184
    def _scalar_div_(var, value):
        return _scalar_elementwise_op_(var, 1.0 / value, 0.0)

185 186 187 188 189
    # for binary operator such as elementwise, compare
    def _binary_creator_(method_name,
                         op_type,
                         reverse=False,
                         scalar_method=None):
190
        def __impl__(self, other_var):
191 192 193 194 195 196 197 198 199
            # 1. scalar exists cases
            # we need combine the tensor.dtype and scalar.dtype, cast correct object
            if isinstance(other_var, float):
                # in all cases(+, -, *, /, **, //, %), we need cast tensor.dtype to float
                if self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
                # but only +, -, *, / can use this method
                if scalar_method is not None:
200
                    return scalar_method(self, other_var)
201 202 203 204 205 206 207 208 209 210 211 212 213 214
            elif isinstance(other_var, int):
                # in all cases(+, -, *, /, **, //, %), we can cast it to float
                # because the output tensor.dtype depend on the type of input tensor
                other_var = float(other_var)
                # division is a special case
                # NOTE(chenweihang): because we cast tensor to float32 instead float64,
                # the division result can only guarantee the numerical accuracy of 6 digits 
                # after the decimal point. The result of numpy calculation is of float64 type, 
                # so the calculation result here and the calculation result of numpy are 
                # different after 6 decimal point. If necessary, we can also use float64 here.
                # torch's behavior here is consistent with ours
                if op_type == 'elementwise_div' and self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
215
                # but only +, -, *, / can use this method
216 217 218 219 220
                if scalar_method is not None:
                    return scalar_method(self, other_var)
            else:
                # do nothing
                pass
221

222
            # 2. create varbase for scalar
223
            lhs_dtype = self.dtype
224 225 226 227 228
            if _in_eager_mode():
                other_var_should_be = core.eager.EagerTensor
            else:
                other_var_should_be = core.VarBase
            if not isinstance(other_var, other_var_should_be):
229 230 231
                if isinstance(other_var, complex):
                    import paddle
                    other_var = paddle.to_tensor(other_var, dtype='complex64')
232
                else:
233 234 235 236 237 238 239
                    if reverse:
                        other_var = create_tensor(
                            other_var, dtype=lhs_dtype, shape=self.shape)
                    else:
                        # add fill_op
                        other_var = create_scalar(
                            value=other_var, dtype=lhs_dtype)
240

241
            # 3. promote types or unify right var type to left var
242
            rhs_dtype = other_var.dtype
243
            if lhs_dtype != rhs_dtype:
244 245 246
                if method_name in _supported_promote_complex_types_ and (
                        lhs_dtype in _complex_dtypes or
                        rhs_dtype in _complex_dtypes):
247 248 249 250 251 252 253 254 255 256
                    # only when lhs_dtype or rhs_dtype is complex type,
                    # the dtype will promote, in other cases, directly
                    # use lhs_dtype, this is consistent will original rule
                    promote_dtype = core._promote_types_if_complex_exists(
                        lhs_dtype, rhs_dtype)
                    self = self if lhs_dtype == promote_dtype else astype(
                        self, promote_dtype)
                    other_var = other_var if rhs_dtype == promote_dtype else astype(
                        other_var, promote_dtype)
                else:
257 258 259
                    warnings.warn(
                        'The dtype of left and right variables are not the same, left dtype is {}, but right dtype is {}, the right dtype will convert to {}'.
                        format(lhs_dtype, rhs_dtype, lhs_dtype))
260 261
                    other_var = astype(other_var, lhs_dtype)

262 263 264 265 266
            if reverse:
                tmp = self
                self = other_var
                other_var = tmp

267
            # 4. calculation
268
            axis = -1
W
wanghuancoder 已提交
269
            math_op = getattr(_C_ops, op_type)
L
Leo Chen 已提交
270
            return math_op(self, other_var, 'axis', axis)
271 272 273 274 275 276

        comment = OpProtoHolder.instance().get_op_proto(op_type).comment

        __impl__.__doc__ = """
        {0}
        Args:
277
            other_var(Tensor|float|int): right hand Tensor
278 279

        Returns:
280
            Tensor
281 282 283 284
        """.format(comment)
        __impl__.__name__ = method_name
        return __impl__

285 286 287 288 289 290 291 292 293 294 295
    varbase_methods = [
        ('__neg__', _neg_),
        ('__float__', _float_),
        ('__long__', _long_),
        ('__int__', _int_),
        ('__len__', _len_),
        ('__index__', _index_),
        ('astype', astype),
        ('dim', lambda x: len(x.shape)),
        ('ndimension', lambda x: len(x.shape)),
        ('ndim', _ndim_),
296
        ('size', _size_),
297
        ('T', _T_),
298 299 300 301 302 303 304 305 306 307 308 309 310 311
        ('__add__',
         _binary_creator_('__add__', 'elementwise_add', False, _scalar_add_)),
        ##  a+b == b+a. Do not need to reverse explicitly
        ('__radd__',
         _binary_creator_('__radd__', 'elementwise_add', False, _scalar_add_)),
        ('__sub__', _binary_creator_('__sub__', 'elementwise_sub', False,
                                     _scalar_sub_)),
        ('__rsub__', _binary_creator_('__rsub__', 'elementwise_sub', True,
                                      _scalar_rsub_)),
        ('__mul__', _binary_creator_('__mul__', 'elementwise_mul', False,
                                     _scalar_mul_)),
        ## a*b == b*a. Do not need to reverse explicitly
        ('__rmul__',
         _binary_creator_('__rmul__', 'elementwise_mul', False, _scalar_mul_)),
312 313
        ('__div__', _binary_creator_('__div__', 'elementwise_div', False,
                                     _scalar_div_)),
S
ShenLiang 已提交
314
        ('__truediv__', _binary_creator_('__truediv__', 'elementwise_div',
315 316 317
                                         False, _scalar_div_)),
        ('__rdiv__', _binary_creator_('__rdiv__', 'elementwise_div', True,
                                      None)),
318 319 320 321 322 323
        ('__rtruediv__', _binary_creator_('rtruediv__', 'elementwise_div', True,
                                          None)),
        ('__pow__', _binary_creator_('__pow__', 'elementwise_pow', False,
                                     None)),
        ('__rpow__', _binary_creator_('__rpow__', 'elementwise_pow', True,
                                      None)),
S
ShenLiang 已提交
324 325 326 327
        ('__floordiv__', _binary_creator_('__floordiv__',
                                          'elementwise_floordiv', False, None)),
        ('__mod__', _binary_creator_('__mod__', 'elementwise_mod', False,
                                     None)),
328 329
        ('__matmul__', _binary_creator_('__matmul__', "matmul_v2", False,
                                        None)),
330 331 332 333 334 335 336
        ## for logical compare
        ('__eq__', _binary_creator_('__eq__', 'equal', False, None)),
        ('__ne__', _binary_creator_('__ne__', 'not_equal', False, None)),
        ('__lt__', _binary_creator_('__lt__', 'less_than', False, None)),
        ('__le__', _binary_creator_('__le__', 'less_equal', False, None)),
        ('__gt__', _binary_creator_('__gt__', 'greater_than', False, None)),
        ('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None)),
337
        ('__array_ufunc__', None)
338 339 340
    ]

    global _already_patch_varbase
341 342 343 344 345 346 347 348 349 350
    global _already_patch_eager_tensor

    if core._in_eager_mode():
        local_already_patch = _already_patch_eager_tensor
        _already_patch_eager_tensor = True
        local_tensor = core.eager.EagerTensor
    else:
        local_already_patch = _already_patch_varbase
        _already_patch_varbase = True
        local_tensor = core.VarBase
351

352
    if not local_already_patch:
353 354 355
        for method in varbase_methods:
            method_name = method[0]
            method_impl = method[1]
356
            setattr(local_tensor, method_name, method_impl)
357 358
    else:
        import paddle.tensor
359
        # Tensor method from module paddle.tensor
360
        for method_name in paddle.tensor.tensor_method_func:
361
            if hasattr(local_tensor, method_name): continue
362
            method_impl = getattr(paddle.tensor, method_name, None)
363
            if method_impl: setattr(local_tensor, method_name, method_impl)
364

365 366
        for magic_method, origin_method in paddle.tensor.magic_method_func:
            impl = getattr(paddle.tensor, origin_method, None)
367
            if impl: setattr(local_tensor, magic_method, impl)