eager_utils_test.cc 8.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16 17 18

#include "gtest/gtest.h"

19
#include "paddle/fluid/eager/eager_tensor.h"
20 21 22 23 24
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/tests/data_structure_tests/grad_node_test.h"
#include "paddle/fluid/eager/tests/test_utils.h"
#include "paddle/fluid/eager/utils.h"

25 26
#include "paddle/pten/api/lib/utils/allocator.h"

27
namespace egr {
28 29 30 31 32 33

TEST(EagerUtils, AutoGradMeta) {
  // Construct Eager Tensor
  pten::DenseTensorMeta meta = pten::DenseTensorMeta(
      pten::DataType::FLOAT32, paddle::framework::make_ddim({1, 1}));
  std::shared_ptr<pten::DenseTensor> dt0 = std::make_shared<pten::DenseTensor>(
34 35 36
      std::make_unique<paddle::experimental::DefaultAllocator>(
          paddle::platform::CPUPlace())
          .get(),
37
      meta);
38
  dt0->mutable_data<float>(paddle::platform::CPUPlace())[0] = 10.0;
39
  paddle::experimental::Tensor et0 = paddle::experimental::Tensor(dt0);
40 41

  std::shared_ptr<pten::DenseTensor> dt1 = std::make_shared<pten::DenseTensor>(
42 43 44
      std::make_unique<paddle::experimental::DefaultAllocator>(
          paddle::platform::CPUPlace())
          .get(),
45
      meta);
46
  dt1->mutable_data<float>(paddle::platform::CPUPlace())[0] = 20.0;
47
  paddle::experimental::Tensor et1 = paddle::experimental::Tensor(dt1);
48 49 50 51 52 53 54 55 56 57

  // unsafe_autograd_meta()
  // autograd_meta()
  AutogradMeta* autograd_meta0 = EagerUtils::autograd_meta(&et0);
  AutogradMeta* autograd_meta1 = EagerUtils::autograd_meta(&et1);

  AutogradMeta* unsafe_autograd_meta_after =
      EagerUtils::unsafe_autograd_meta(et0);
  CHECK_NOTNULL(unsafe_autograd_meta_after);

58 59 60 61
  // NOTE: Since autograd_meta will be copied make sure it's not null
  std::vector<paddle::experimental::Tensor> ets = {et0, et1};
  auto test_node = std::make_shared<eager_test::GradTestNode>();

62
  std::vector<AutogradMeta*> autograd_metas = EagerUtils::autograd_meta(&ets);
63
  std::vector<AutogradMeta*> unsafe_autograd_metas =
64
      EagerUtils::unsafe_autograd_meta(ets);
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
  CHECK_NOTNULL(unsafe_autograd_metas[0]);
  CHECK_NOTNULL(unsafe_autograd_metas[1]);

  // Set Autograd Meta
  autograd_meta0->SetSingleOutRankWithSlot(0, 1);

  autograd_meta0->SetGradNode(test_node);

  // OutRankInfo()
  std::pair<size_t, size_t> out_rank_info0 = EagerUtils::OutRankInfo(et0);
  CHECK_EQ(static_cast<int>(out_rank_info0.first), 0);
  CHECK_EQ(static_cast<int>(out_rank_info0.second), 1);

  // grad_node()
  std::shared_ptr<GradNodeBase> grad_node0 = EagerUtils::grad_node(et0);
  CHECK_NOTNULL(grad_node0.get());

  EagerUtils::SetHistory(autograd_meta1, test_node);
  EagerUtils::SetHistory({autograd_meta1}, test_node);
  std::shared_ptr<GradNodeBase> grad_node1 = EagerUtils::grad_node(et1);
  CHECK_NOTNULL(grad_node1.get());

  // SetOutRankWithSlot()
  EagerUtils::SetOutRankWithSlot(autograd_meta1, 0);
  std::pair<size_t, size_t> out_rank_info1 = EagerUtils::OutRankInfo(et1);
  CHECK_EQ(static_cast<int>(out_rank_info1.first), 0);
  CHECK_EQ(static_cast<int>(out_rank_info1.second), 0);

  EagerUtils::SetOutRankWithSlot(&autograd_metas, 0);
  std::pair<size_t, size_t> out_rank_info2 = EagerUtils::OutRankInfo(et0);
  CHECK_EQ(static_cast<int>(out_rank_info2.first), 0);
  CHECK_EQ(static_cast<int>(out_rank_info2.second), 0);

  std::pair<size_t, size_t> out_rank_info3 = EagerUtils::OutRankInfo(et1);
  CHECK_EQ(static_cast<int>(out_rank_info3.first), 0);
  CHECK_EQ(static_cast<int>(out_rank_info3.second), 1);
}

103
template <typename T>
104 105
paddle::experimental::Tensor CreateTestCPUTensor(
    T val, const paddle::framework::DDim& ddim) {
106 107
  pten::DenseTensorMeta meta =
      pten::DenseTensorMeta(pten::DataType::FLOAT32, ddim);
108
  paddle::experimental::Tensor tensor;
109
  std::shared_ptr<pten::DenseTensor> dt = std::make_shared<pten::DenseTensor>(
110 111 112
      std::make_unique<paddle::experimental::DefaultAllocator>(
          paddle::platform::CPUPlace())
          .get(),
113
      meta);
114
  auto* dt_ptr = dt->mutable_data<T>(paddle::platform::CPUPlace());
115 116 117 118 119 120
  for (int64_t i = 0; i < dt->numel(); i++) {
    dt_ptr[i] = val;
  }
  tensor.set_impl(dt);
  return tensor;
}
121

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
TEST(EagerUtils, ComputeRequireGrad) {
  auto auto_grad0 = std::make_shared<egr::AutogradMeta>();
  auto auto_grad1 = std::make_shared<egr::AutogradMeta>();
  auto auto_grad2 = std::make_shared<egr::AutogradMeta>();
  auto auto_grad3 = std::make_shared<egr::AutogradMeta>();
  CHECK_EQ(auto_grad0->NumericStopGradient(), -1);
  VLOG(6) << "Single Test ComputeRequireGrad";
  auto_grad0->SetStopGradient(true);
  CHECK(egr::EagerUtils::ComputeRequireGrad(true, auto_grad0.get()) == false);
  CHECK(egr::EagerUtils::ComputeRequireGrad(false, auto_grad0.get()) == false);
  auto_grad0->SetStopGradient(false);
  CHECK(egr::EagerUtils::ComputeRequireGrad(false, auto_grad0.get()) == false);
  CHECK(egr::EagerUtils::ComputeRequireGrad(true, auto_grad0.get()) == true);

  VLOG(6) << "Multi Test ComputeRequireGrad";
  auto_grad0->SetStopGradient(false);
  auto_grad1->SetStopGradient(true);
  CHECK(egr::EagerUtils::ComputeRequireGrad(true, auto_grad0.get(),
                                            auto_grad1.get()) == true);
  CHECK(egr::EagerUtils::ComputeRequireGrad(false, auto_grad0.get(),
                                            auto_grad1.get()) == false);
  auto_grad0->SetStopGradient(true);
  CHECK(egr::EagerUtils::ComputeRequireGrad(true, auto_grad0.get(),
                                            auto_grad1.get()) == false);
  CHECK(egr::EagerUtils::ComputeRequireGrad(false, auto_grad0.get(),
                                            auto_grad1.get()) == false);
}

TEST(EagerUtils, PassStopGradient) {
  auto auto_grad0 = std::make_shared<egr::AutogradMeta>();
  auto auto_grad1 = std::make_shared<egr::AutogradMeta>();
  auto auto_grad2 = std::make_shared<egr::AutogradMeta>();
  auto auto_grad3 = std::make_shared<egr::AutogradMeta>();
  CHECK_EQ(auto_grad0->NumericStopGradient(), -1);
  VLOG(6) << "Test PassStopGradient";
  egr::EagerUtils::PassStopGradient(false, auto_grad0.get());
  CHECK(auto_grad0->StopGradient() == false);
  egr::EagerUtils::PassStopGradient(true, auto_grad0.get(), auto_grad1.get(),
                                    auto_grad2.get(), auto_grad3.get());
  CHECK(auto_grad0->StopGradient() == true);
  CHECK(auto_grad1->StopGradient() == true);
  CHECK(auto_grad2->StopGradient() == true);
  CHECK(auto_grad3->StopGradient() == true);
}

167
TEST(EagerUtils, TrySyncToVar) {
168
  paddle::framework::DDim ddim = paddle::framework::make_ddim({2, 4, 4, 4});
169
  auto tensor = CreateTestCPUTensor(5.0f, ddim);
170 171
  std::vector<std::shared_ptr<egr::EagerTensor>> var_bases = {
      egr::EagerUtils::TrySyncToVar(tensor)};
172 173 174 175 176 177 178 179 180 181 182 183 184

  paddle::framework::Variable* var = var_bases[0]->MutableVar();
  const auto& framework_tensor = var->Get<paddle::framework::LoDTensor>();

  const float* ptr = framework_tensor.data<float>();
  VLOG(6) << "Check Value for SyncToVarsSingle";
  CHECK_EQ(framework_tensor.numel(), tensor.numel());

  for (int i = 0; i < framework_tensor.numel(); i++) {
    CHECK_EQ(ptr[i], 5.0f);
  }
}

185
TEST(EagerUtils, TrySyncToVars) {
186
  paddle::framework::DDim ddim = paddle::framework::make_ddim({2, 4, 4, 4});
187 188
  std::vector<paddle::experimental::Tensor> tensors = {
      CreateTestCPUTensor(1.0f, ddim), CreateTestCPUTensor(2.0f, ddim)};
189 190

  std::vector<std::shared_ptr<egr::EagerTensor>> var_bases =
191
      egr::EagerUtils::TrySyncToVars(tensors);
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

  {
    paddle::framework::Variable* var = var_bases[0]->MutableVar();
    const auto& framework_tensor = var->Get<paddle::framework::LoDTensor>();

    const float* ptr = framework_tensor.data<float>();
    CHECK_EQ(framework_tensor.numel(), tensors[0].numel());

    for (int i = 0; i < framework_tensor.numel(); i++) {
      CHECK_EQ(ptr[i], 1.0);
    }
  }

  {
    paddle::framework::Variable* var = var_bases[1]->MutableVar();
    const auto& framework_tensor = var->Get<paddle::framework::LoDTensor>();

    const float* ptr = framework_tensor.data<float>();
    VLOG(6) << "Check Value for SyncToVarsMultiple";
    CHECK_EQ(framework_tensor.numel(), tensors[0].numel());

    for (int i = 0; i < framework_tensor.numel(); i++) {
      CHECK_EQ(ptr[i], 2.0);
    }
  }
}

219 220
TEST(EagerUtils, CreateVars) {
  VLOG(6) << "Check CreateVars";
221
  std::vector<std::shared_ptr<egr::EagerTensor>> outs =
222
      egr::EagerUtils::CreateVars(2);
223
  CHECK_EQ(outs.size(), size_t(2));
224
  CHECK(outs[0]->Var().IsInitialized() == false);
225
}
226

227
}  // namespace egr